
DATA 442:
Neural Networks &
Deep Learning

Dan Runfola – danr@wm.edu

icss.wm.edu/data442/

icss.wm.edu2

45

65

97

78

12

78

6

9

4

5

78

8

3

12

1

8Red Filter
Activation

Blue Filter
Activation

Green Filter
Activation

All Colors
Activation

Filter 255
Activation

3

12

1

8

...

P

1020 x 1

h

50

s

26

• Four Choices (Hyperparameters)
• Number of Filters
• Filter Dimensions
• Stride
• Zero Padding

icss.wm.edu3

Full Matrix of
ImageFull Matrix of

Image 32 x 32 x 3
Tensor

5x5x3
Filter

Activation Layer

28 x 28 x 1
Matrix

icss.wm.edu4

Full Matrix of
ImageFull Matrix of

Image 32 x 32 x 3
Tensor

5x5x3
Filter

5x5x3
Filter

5x5x3
Filter

5x5x3
Filter

28x28x1
Activation Surface

28x28x1
Activation Surface

28x28x1
Activation Surface

28x28x1
Activation Surface

28x28x4
Activation Surfaces
(Activation Tensor)

(Activation Maps)

icss.wm.edu5

Input Activation Array 1
784

Weights for each
Pixel, for each of

10 CIFAR
classes

784

10

= Output Scores Array

1

10

Activation Layer
(28 x 28 x 1 Matrix)

Convolution
(5x5x3 Filter)

icss.wm.edu6

5x5x3
Filter

1 5 1 8 6

9 8 5 4 3

1 6 4 3 1

1 5 8 3 1

1 2 2 1 1
5 8 4 2 0

6 6 4 5 1

9 8 9 1 1

7 6 5 0 3

5 1 1 0 2
5 6 8 7 7

2 1 1 1 4

2 5 2 5 5

3 5 2 3 5

4 5 2 3 5

icss.wm.edu7

Optimization

Goal: Find the best weights
parameters to minimize a loss
function.
Approaches we’ve discussed:
Gradient Descent, Stochastic
Gradient Descent, Mini-batch
SGD.

icss.wm.edu

Optimization
Example (Mini-batch SGD):
1. Sample your data (batch size)
2. Run a forward propagation through your network.
3. Calculate your loss
4. Backpropogate to calculate gradients of weights with respect to
loss.
5. Update weights using the gradient.
6. Repeat until some threshold is reached (i.e., number of
iterations).

8

icss.wm.edu

Building and Optimizing a Neural Network

• Define Network Architecture (Computational Graph)

• Train / Optimize the Network

• Evaluation

9

icss.wm.edu

Network Architecture: Fundamentals

10

Pixel_1_Value

Weight for Pixel
1

*

icss.wm.edu

Network Architecture: Fundamentals

11

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+

icss.wm.edu

Network Architecture: Fundamentals

12

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+ ReLu

icss.wm.edu

Network Architecture: Fundamentals

13

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+ ReLu

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Network Architecture: Fundamentals

14

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+ ReLu

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Network Architecture: Fundamentals

15

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+ ReLu

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Network Architecture: Activation Function

16

Pixel 1
Value

Pixel 2
Value

def activationFunction(input):
return(input * 1)

icss.wm.edu

Network Architecture: Activation Function

17

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Network Architecture: Activation Function

18

Pixel 1
Value

Pixel 2
Value

def activationFunction(input):
return(max(input,0))

icss.wm.edu

Sigmoid Activation Function

19

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

icss.wm.edu

Sigmoid Activation Function

20

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional
Gradient Solutions

icss.wm.edu

Sigmoid Activation Function

21

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional
Gradient Solutions

Consider if pixel 1 value and
pixel 2 value are both 1, and
both weights are 10.

What would a change in the
weight of -1 do to the sigmoid
activation function?

icss.wm.edu

Sigmoid Activation Function

22

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional
Gradient Solutions

Consider if pixel 1 value and
pixel 2 value are both 1, and
both weights are 10.

What would a change in the
weight of -1 do to the sigmoid
activation function?

Nothing
(the gradient would be 0)

icss.wm.edu

Sigmoid Activation Function

23

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional
Gradient Solutions

Now consider the directionality
of the gradient. If all of your
inputs into a given neuron are
positive, then gradients will all
always be positive or negative -
no mixing of positive and
negative gradients during back
propagation.

icss.wm.edu

tanh Activation Function

24

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

-1 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

● Zero Centered

Challenges
● Gradient Decay & Saturation

icss.wm.edu

Rectified Linear Unit (ReLU)
Activation Function

25

Pixel 1
Value

Pixel 2
Value

Features
● No saturation in positive

direction

● Very, very simple (and, thus,
computationally efficient)

● Roughly approximates how a
neuron works - 0 values until 0
is reached, then x.

Challenges
● Not zero-centered

● Gradient Decay / Saturation if X < 0

icss.wm.edu

Leaky ReLU
Activation Function

26

Pixel 1
Value

Pixel 2
Value

Features
● No saturation (and, thus, no

ReLU “death”).

● Still very simple (and, thus,
computationally efficient)

● Roughly approximates how a
neuron works - small values
until 0 is reached, then x.

Challenges
● Not zero-centered

icss.wm.edu

Parametric ReLU
Activation Function

27

Pixel 1
Value

Pixel 2
Value

Features
● No saturation (and, thus, no

ReLU “death”).

● Still very simple (and, thus,
computationally efficient)

● Roughly approximates how a
neuron works - small values
until 0 is reached, then x.

● Parameterized, and can be fit
during optimization.

Challenges
● Not zero-centered

icss.wm.edu

Exponential Linear Units (ELU)
Activation Function

28

Pixel 1
Value

Pixel 2
Value

Features
● No saturation if x > 0

● Roughly approximates how a
neuron works - small values
until 0 is reached, then x.

● Parameterized, and can be fit
during optimization.

● Close to mean centered.

Challenges
● Potential for saturation if x < 0.

● Not actually zero-centered, though
it is much closer.

icss.wm.edu29

Network Architecture: Data Preprocessing

icss.wm.edu

Sigmoid Activation Function

30

Pixel 1
Value

Pixel 2
Value

Features
● Output of function falls between

0 and 1.

● Roughly approximates how a
neuron works - 0 values until
some threshold is reached,
then 1.

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional
Gradient Solutions

Now consider the directionality
of the gradient. If all of your
inputs into a given neuron are
positive, then gradients will all
always be positive or negative -
no mixing of positive and
negative gradients during back
propagation.

icss.wm.edu

Network Optimization: Weight Initialization

31

Pixel 1
Value

Pixel 2
Value

P

1020 x 1

h

50

s

26

icss.wm.edu

Network Optimization: Weight Initialization

32

icss.wm.edu

Network Optimization: Weight Initialization

33

Idea: Big numbers!
W = np.random.randn(3072, 10) * 10

icss.wm.edu34

icss.wm.edu

Network Optimization: Weight Initialization

35

Idea: ...medium numbers!
(Ok, wait a minute, this is harder than it
seemed).

icss.wm.edu

Xavier Initialization

Initial weights should be based on model complexity.

Measurement of complexity: How many inputs and outputs your
network has.

36

icss.wm.edu

Xavier Initialization

Original:
W = np.random.randn(3072, 10) * .0001

Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)

37

icss.wm.edu

Xavier Initialization

Original:
W = np.random.randn(3072, 10) * .0001
Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)
He:
W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)

38

icss.wm.edu

Another Strategy: Batch Normalization

39

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

icss.wm.edu

Another Strategy: Batch Normalization

40

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Another Strategy: Batch Normalization

41

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Pixel 1
Value

Pixel 2
Value

Pixel 1
Value

Pixel 2
Value

Batch
Normalization

icss.wm.edu

Another Strategy: Batch Normalization

42

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Pixel 1
Value

Pixel 2
Value

Pixel 1
Value

Pixel 2
Value

Batch
Normalization

icss.wm.edu

Another Strategy: Batch Normalization

43

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Pixel 1
Value

Pixel 2
Value

Pixel 1
Value

Pixel 2
Value

Batch
Normalization

icss.wm.edu

Where we are now

1. Define network architecture (number of hidden layers, inputs,
outputs, batch normalizations, activations, etc).

2. Define data preprocessing pipeline (zero-mean
standardization).

3. Define weight initializations strategy.

44

