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• Four Choices (Hyperparameters)
• Number of Filters
• Filter Dimensions
• Stride
• Zero Padding
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Optimization

Goal: Find the best weights 
parameters to minimize a loss 
function.
Approaches we’ve discussed: 
Gradient Descent, Stochastic 
Gradient Descent, Mini-batch 
SGD.
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Optimization
Example (Mini-batch SGD):
1. Sample your data (batch size)
2. Run a forward propagation through your network.
3. Calculate your loss
4. Backpropogate to calculate gradients of weights with respect to 
loss.
5. Update weights using the gradient.
6. Repeat until some threshold is reached (i.e., number of 
iterations).

8
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Building and Optimizing a Neural Network

• Define Network Architecture (Computational Graph)

• Train / Optimize the Network

• Evaluation

9
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Network Architecture: Fundamentals
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Network Architecture: Fundamentals
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Network Architecture: Fundamentals

12

Pixel 1 
Value

Weight for 
Pixel 1

*

Pixel 2 
Value

Weight for 
Pixel 2

*

+ ReLu



icss.wm.edu

Network Architecture: Fundamentals
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Network Architecture: Fundamentals
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Network Architecture: Fundamentals
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Network Architecture: Activation Function
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def activationFunction(input):
return(input * 1)
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Network Architecture: Activation Function
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Network Architecture: Activation Function
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def activationFunction(input):
return(max(input,0))
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional 
Gradient Solutions
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional 
Gradient Solutions

Consider if pixel 1 value and 
pixel 2 value are both 1, and 
both weights are 10.

What would a change in the 
weight of -1 do to the sigmoid 
activation function?
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional 
Gradient Solutions

Consider if pixel 1 value and 
pixel 2 value are both 1, and 
both weights are 10.

What would a change in the 
weight of -1 do to the sigmoid 
activation function?

Nothing  
(the gradient would be 0)
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional 
Gradient Solutions

Now consider the directionality 
of the gradient.  If all of your 
inputs into a given neuron are 
positive, then gradients will all 
always be positive or negative - 
no mixing of positive and 
negative gradients during back 
propagation.
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tanh Activation Function
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Features
● Output of function falls between 

-1 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

● Zero Centered

Challenges
● Gradient Decay & Saturation
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Rectified Linear Unit (ReLU)
Activation Function
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Features
● No saturation in positive 

direction

● Very, very simple (and, thus, 
computationally efficient)

● Roughly approximates how a 
neuron works - 0 values until 0 
is reached, then x. 

Challenges
● Not zero-centered

● Gradient Decay / Saturation if X < 0
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Leaky ReLU
Activation Function
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Pixel 1 
Value

Pixel 2 
Value

Features
● No saturation (and, thus, no 

ReLU “death”).

● Still very simple (and, thus, 
computationally efficient)

● Roughly approximates how a 
neuron works - small values 
until 0 is reached, then x. 

Challenges
● Not zero-centered
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Parametric ReLU
Activation Function
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Value

Pixel 2 
Value

Features
● No saturation (and, thus, no 

ReLU “death”).

● Still very simple (and, thus, 
computationally efficient)

● Roughly approximates how a 
neuron works - small values 
until 0 is reached, then x. 

● Parameterized, and can be fit 
during optimization.

Challenges
● Not zero-centered
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Exponential Linear Units (ELU)
Activation Function
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Pixel 1 
Value

Pixel 2 
Value

Features
● No saturation if x > 0

● Roughly approximates how a 
neuron works - small values 
until 0 is reached, then x. 

● Parameterized, and can be fit 
during optimization.

● Close to mean centered.

Challenges
● Potential for saturation if x < 0.

● Not actually zero-centered, though 
it is much closer.
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Network Architecture: Data Preprocessing
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Sigmoid Activation Function
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Features
● Output of function falls between 

0 and 1.

● Roughly approximates how a 
neuron works - 0 values until 
some threshold is reached, 
then 1. 

Challenges
● Gradient Decay & Saturation

● Not Zero-Centered & Unidirectional 
Gradient Solutions

Now consider the directionality 
of the gradient.  If all of your 
inputs into a given neuron are 
positive, then gradients will all 
always be positive or negative - 
no mixing of positive and 
negative gradients during back 
propagation.
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Network Optimization: Weight Initialization
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Network Optimization: Weight Initialization
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Network Optimization: Weight Initialization
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Idea: Big numbers!
W = np.random.randn(3072, 10) * 10
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Network Optimization: Weight Initialization

35

Idea: ...medium numbers!
(Ok, wait a minute, this is harder than it 
seemed).
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Xavier Initialization

Initial weights should be based on model complexity.

Measurement of complexity: How many inputs and outputs your 
network has.

36
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Xavier Initialization

Original: 
W = np.random.randn(3072, 10) * .0001

Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)

37
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Xavier Initialization

Original: 
W = np.random.randn(3072, 10) * .0001
Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)
He:
W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)

38
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Another Strategy: Batch Normalization
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Another Strategy: Batch Normalization
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Another Strategy: Batch Normalization
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Another Strategy: Batch Normalization
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Another Strategy: Batch Normalization
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Where we are now

1. Define network architecture (number of hidden layers, inputs, 
outputs, batch normalizations, activations, etc).

2. Define data preprocessing pipeline (zero-mean 
standardization).

3. Define weight initializations strategy.

44


