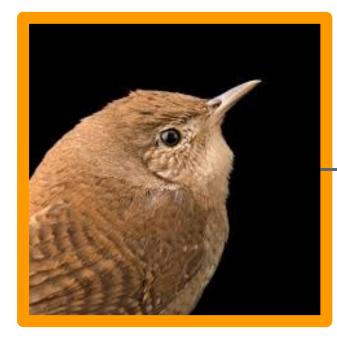
DATA 442: Neural Networks & Deep Learning

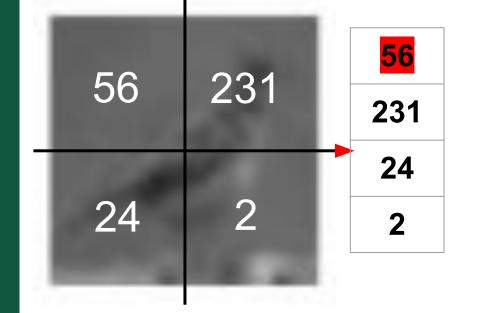
Dan Runfola – danr@wm.edu icss.wm.edu/data442/



def predict(image, W): W*image

nn.predict(image, W)

Probability
0.2
0.1
0.15
0.19



<mark>0.2</mark>	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9

def predict(image, W): W*image

Cat Score = -97.9

Bird Score = 434.7

Plane Score = 63.15

Total Loss = $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

f(image, W) = scores

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

J is the total number of classes, represented by index j. In the current example, *j*=1 would be "Cat", *j*=2 would be "Car", etc.

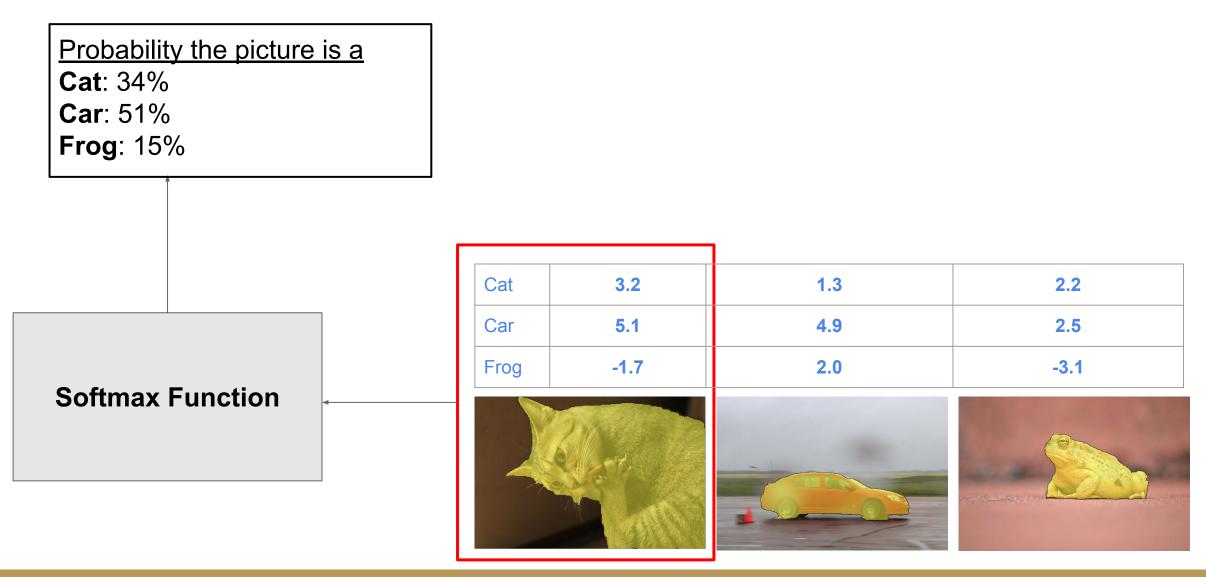
s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

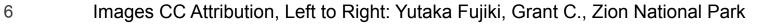
Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

5

$$\sum_{\substack{j \neq y_i}}^{\text{Multiclass SVM Loss}} \max(0, s_j - s_{y_i} + \varepsilon)$$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1





Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

 $P(Y = k | X = X_i)$

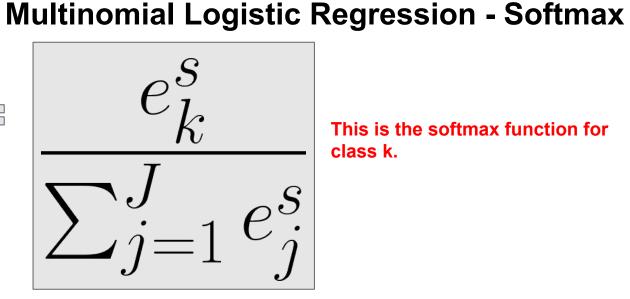
Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

$P(Y = k | X = X_i) \equiv$



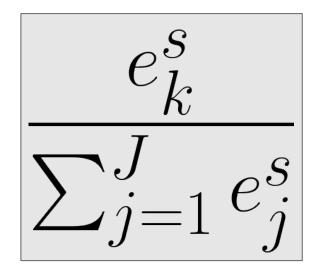
This is the softmax function for class k.

Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

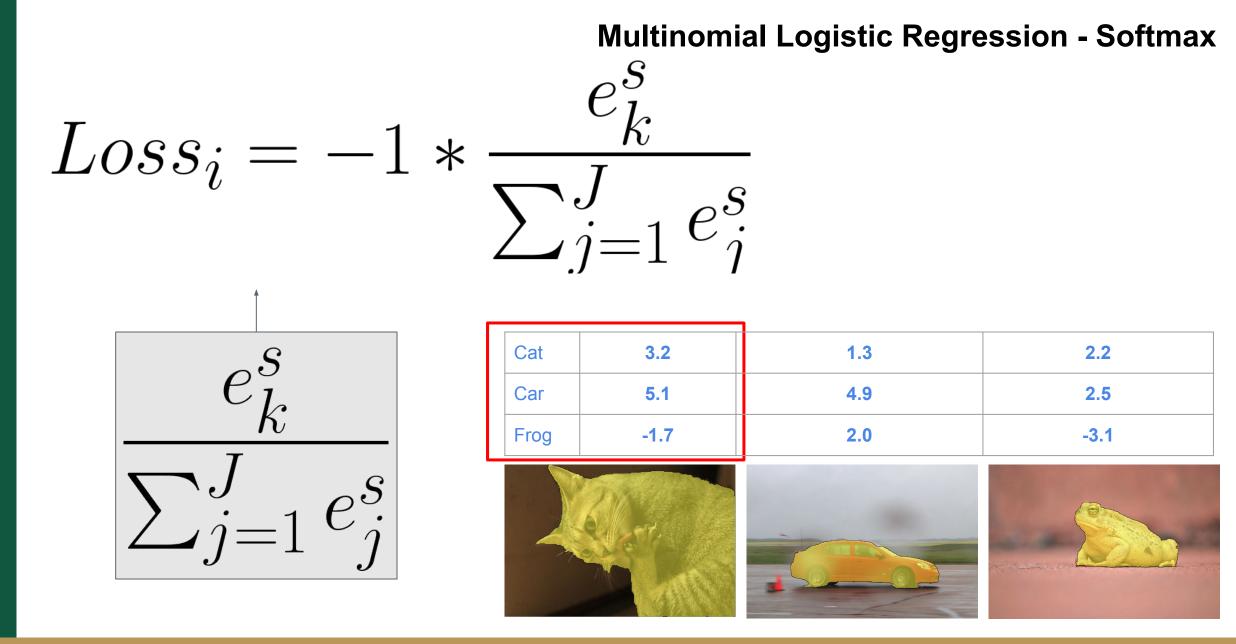
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

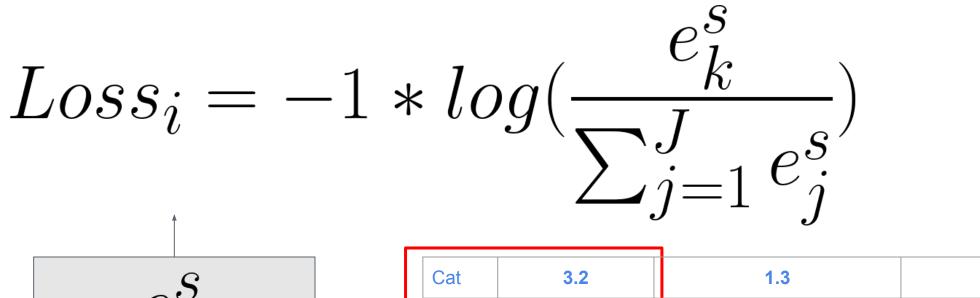


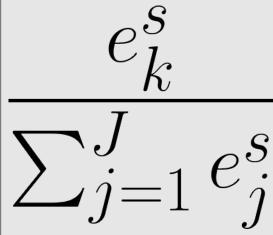
In a perfect world for this example, the above function would result in 1 for cat, and 0 for both car and frog.

Multinomial Logistic Regression - Softmax

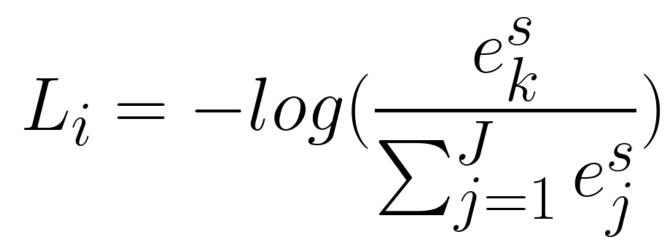
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1





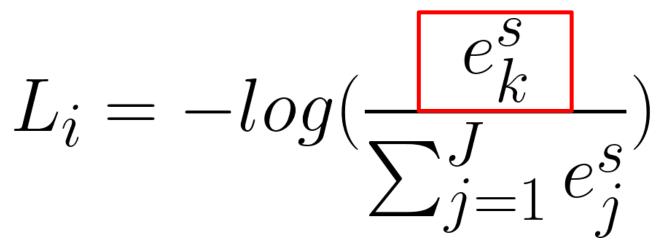


Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1



Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Class	Score	e^s
Cat	3.2	24.5
Car	5.1	164.0
Frog	-1.7	0.18



Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Class	Score	e^s	e^s/188.68
Cat	3.2	24.5	0.13
Car	5.1	164.0	0.87
Frog	-1.7	0.18	0.00

188.68

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

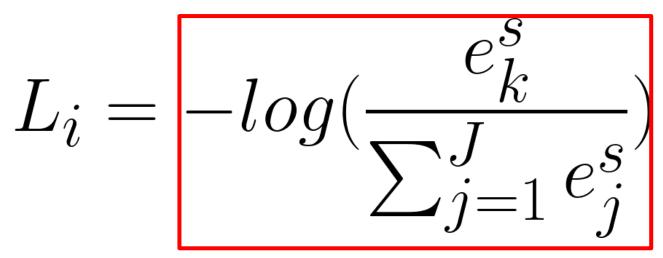
 $L_i =$

-log(0.13) = 0.89

Class	Score	e^s	e^s/188.68
Cat	3.2	24.5	0.13
Car	5.1	164.0	0.87
Frog	-1.7	0.18	0.00

188.68

Multinomial Logistic Regression - Softmax



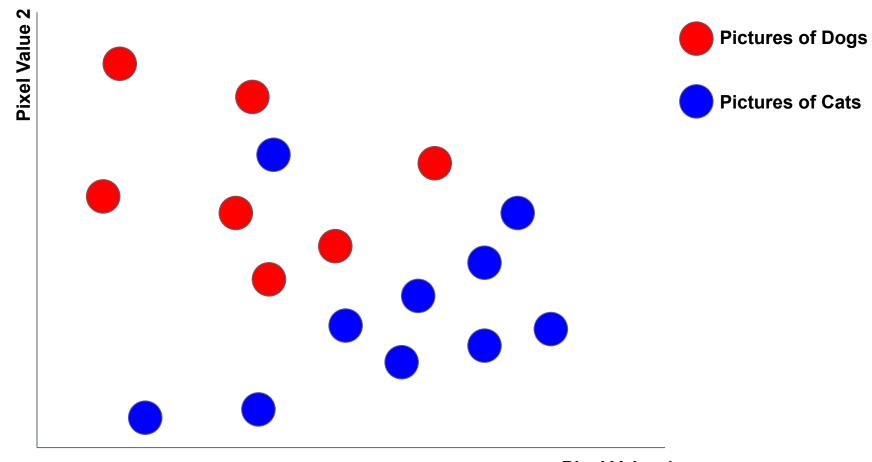
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

$L \cdot loa$	$(\underline{e_k^s})$
$L_i = -log$	$\left(\frac{1}{2} \right)$
	$\sum_{j=1}^{s} e_j^s$

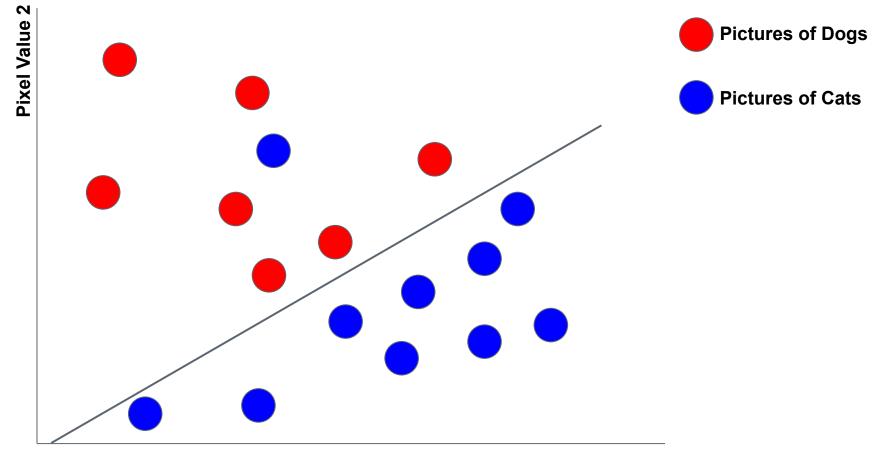
Loss_i	0.89	0.034	2.67
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

$$\sum_{\substack{j \neq y_i}}^{J} \max(0, s_j - s_{y_i} + \varepsilon) \quad L_i = -log(\frac{e_k^s}{\sum_{j=1}^{J} e_j^s})$$

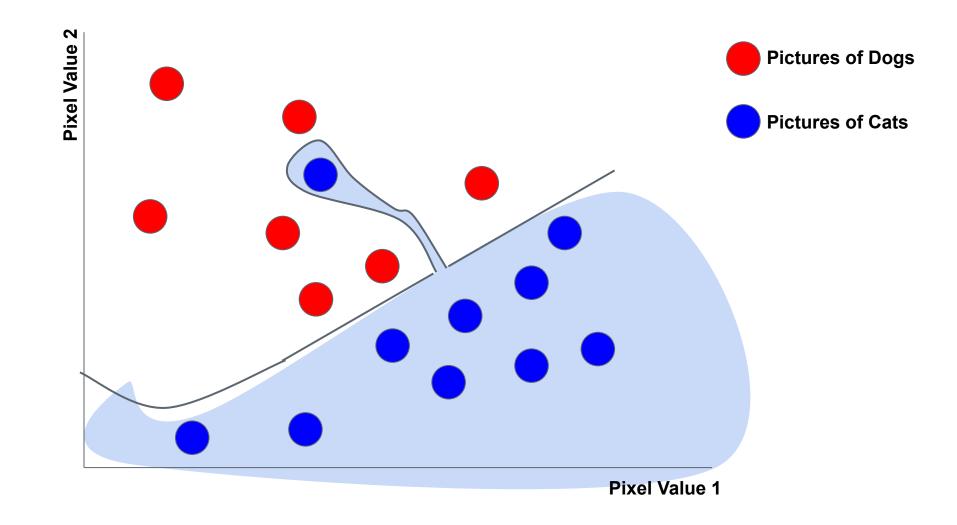
SVM	2.9	0	12.9
Softmax	0.89	0.034	2.67
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

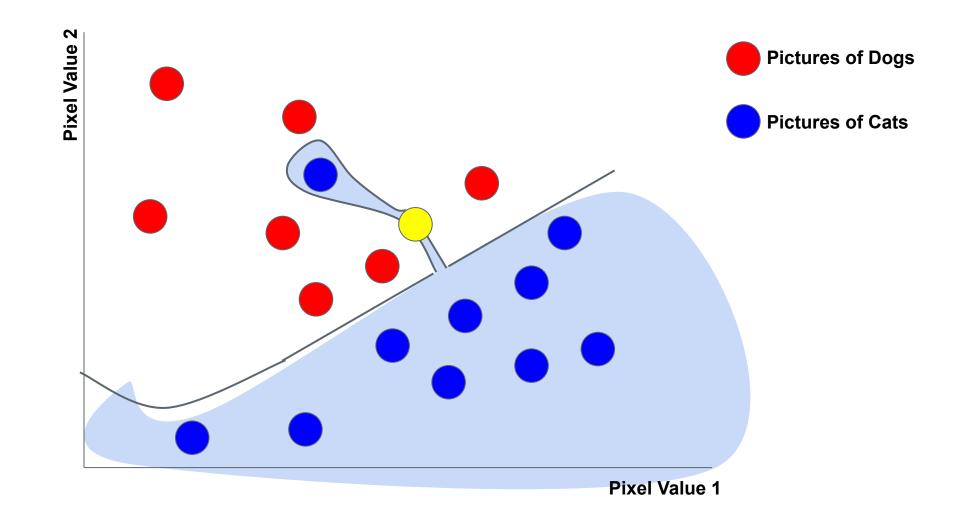


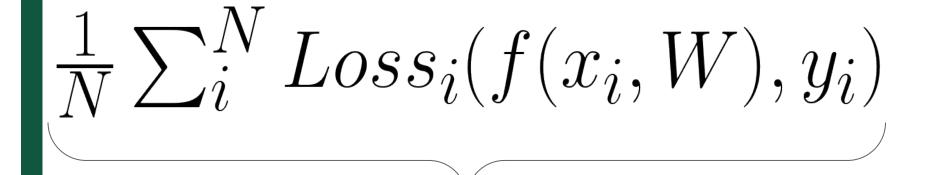
Pixel Value 1



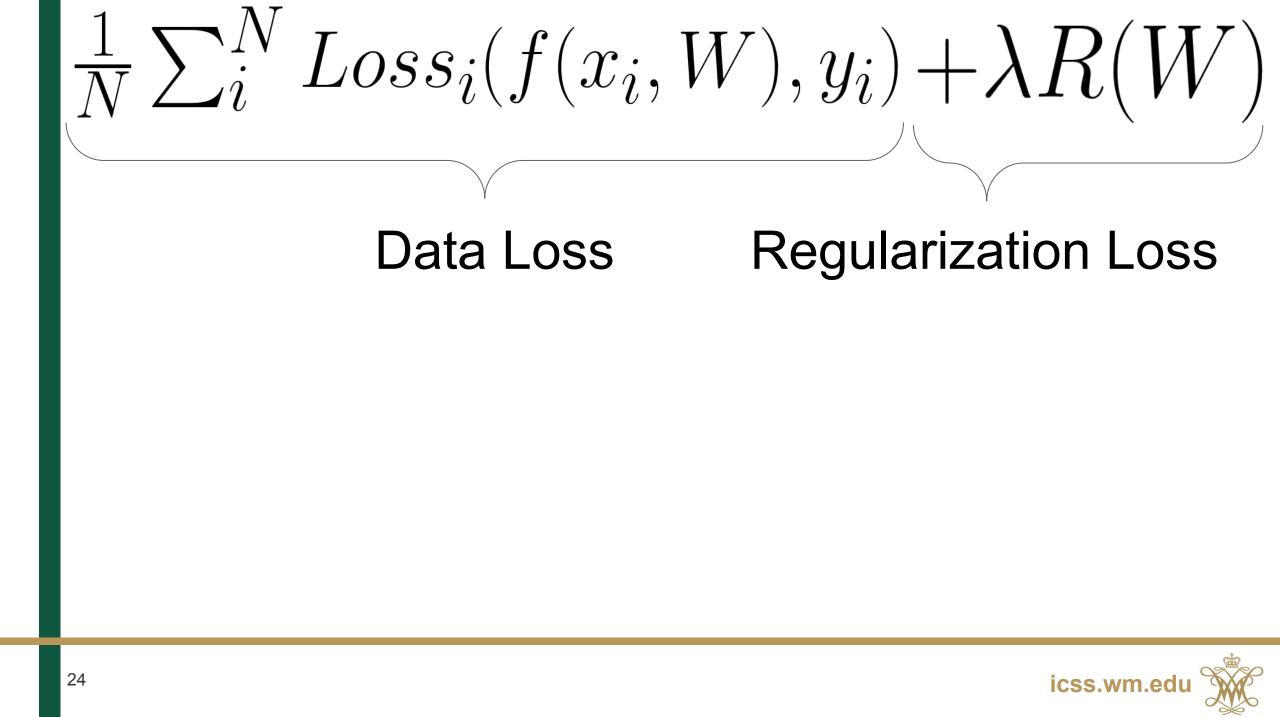
Pixel Value 1

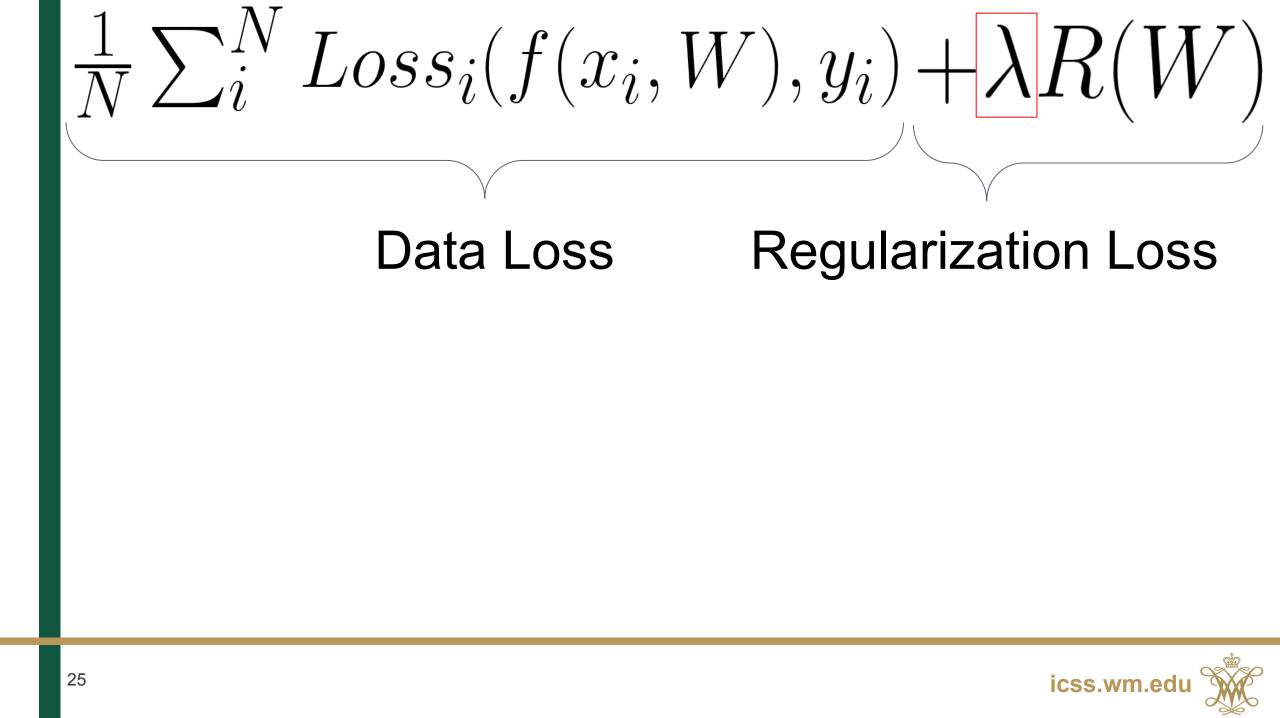






Total Loss (Data Loss)





 $\frac{1}{N}\sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i}) + \lambda R(W)$ L2 Regularization $R(W) = \sum W$ k=1

 $\frac{1}{N}\sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i}) + \lambda R(W)$ L1 Regularization $R(W) = \sum |W_k|$ k=1

 $\frac{1}{N}\sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i}) + \lambda R(W)$

Elastic Net - Combination of L1 and L2

Max Norm Regularization, Batch Normalization, Stochastic Depths, Dropout Networks, ... many more.

 $\sum_{i=1}^{N=3} \{(x_i, y_i)\}$

 $\sum_{i=1}^{N=3} \{ (x_i, y_i) \}$

def predict(image, W): return(W*image)

$$\sum_{i=1}^{N=3} \{ (x_i, y_i) \}$$

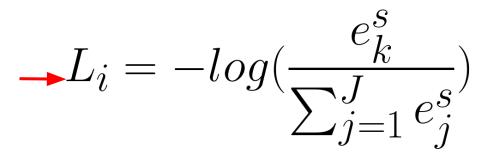
def predict(image, W): return(W*image)

	_		
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

$$\sum_{i=1}^{N=3} \{ (x_i, y_i) \}$$

def predict(image, W): return(W*image)

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1



Su	mmary	Y Tot	al Loss=	
N $i=$	$=3 \{ (x_i, $	$y_i)\}$ $\frac{1}{N}$	$\sum_{i}^{N} Loss_{i}(.$	$f(x_i, W), y_i)$
-	redict(ima	- /		
re	eturn(W*im ↓	age)		
Cat	3.2	1.3	2.2	
Car	5.1	4.9	2.5	- S
Frog	-1.7	2.0	-3.1	$ I = log \begin{pmatrix} e_k^{\circ} \\ k \end{pmatrix} $
				$-L_i = -log(\frac{e_k^s}{\sum_{j=1}^J e_j^s})$
33				icss.wm.edu

y or

Su	mmary	Tot	al Loss=	
$N_{i=}$	$=3 \{ (x_i, y) \}$	$(j_i)\} \frac{1}{N}$	$\sum_{i}^{N} Loss_{i}(f$	$(x_i, W), y_i) + \lambda R(W)$
-	oredict(image eturn(W*image			
Cat	3.2	1.3	2.2	
Car	5.1	4.9	2.5	S
Frog	-1.7	2.0	-3.1	$I = log(e_k^{\circ})$
				$-L_i = -log(\frac{e_k^s}{\sum_{j=1}^J e_j^s})$