DATA 442: Neural Networks & Deep Learning

Dan Runfola – danr@wm.edu icss.wm.edu/data442/

34	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0
14	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28
4	39	0	29	15	6	50	2	21	10	8	45	150	145	106	46
42	10	15	19	24	18	111	123	118	104	119	122	117	140	138	28
21	35	19	30	14	143	146	147	142	103	109	127	108	148	20	23
30	105	147	102	126	118	108	101	140	131	124	136	47	27	26	38
135	133	137	108	140	144	135	120	118	137	125	43	8	31	45	10
106	142	108	138	137	111	38	36	32	1	19	44	34	4	38	49
122	142	127	131	143	8	47	4	0	31	39	18	46	1	50	25
149	137	122	36	50	19	24	45	16	30	2	47	2	35	29	50
147	115	3	29	10	2	13	1	48	3	45	28	39	14	14	20

1	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0										
1	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28										
1	39	0	29	15	6	50	2	21	10	8	45	150	145	106	46										
2	10	15	19	24	18	111	123	118	104	119	122	117	140	138	28										
L	35	19	30	14	143	146	147	142	103	109	127	108	148	20	23										
)	105	147	102	126	118	108	101	140	131	124	136	47	27	26	38										
5	133	137	108	140	144	135	120	118	137	125	43	8	31	45	10										_
5	142	108	138	137	111	38	36	32	1	34	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0
2	142	127	131	143	8	47	4	0	31	14	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28
3	137	122	36	50	19	24	45	16	30	28	6	31	39	0	23	36	34	21	10	8	45	6	29	45	46
7	115	3	29	10	2	13	1	48	3	71	6	9	44	41	23	36	61	4	104	119	122	117	140	138	28
			1000000				/			8	60	45	11	12	165	122	115	142	103	109	127	108	148	100	23
										2	94	156	88	174	160	62	59	140	131	124	136	127	150	145	38
										183	94	160	101	108	163	135	119	118	137	125	43	8	31	45	10
_										128	179	74	122	89	140	59	22	32	1	19	44	34	4	38	49
								/	/	165	100	106	172	110	41	58	11	0	31	39	18	46	1	50	25
										154	175	158	76	53	58	61	69	16	30	2	47	2	35	29	50
										153	138	43	12	19	40	62	26	48	3	45	28	39	14	14	20
								/									\sim								

icss.wm.edu

Deformation

Deformation

Occlusion

Recap: KNN

T from Training Data

T we want to Recognize

Sum of Absolute Difference: 10

Model 1: **K** = 1 | **Distance** = L1

Model 2: **K** = 2 | **Distance** = L1

Model 3: **K** = 3 | **Distance** = L1

Model 4: **K** = 4 | **Distance** = L1

Model 5: **K** = 5 | **Distance** = L1

Model 6: **K** = 1 | **Distance** = L2

Model 7: **K** = 2 | **Distance** = L2

Model 8: **K** = 3 | **Distance** = L2

Model 9: **K** = 4 | **Distance** = L2

Model 0: **K** = 5 | **Distance** = L2

Choose model with lowest overall error <u>based on the test data only</u>, use those hyperparameters to test how well your model performs on the completely independent <u>testing</u> dataset. Report the accuracy from this testing dataset as your final "this is how good our model is".

Building Blocks of Neural Nets: Linear Classification

- Parametric vs. Non Parametric
- Interpreting Linear Classifiers
- Limitations of Linear Classifiers
- Segway into Loss Functions

CIFAR10 Dataset

(random examples generated from lab 1 code -->)

Goal: Given a new image, identify the correct class.

KNN approach: Record all of the images, and when a new image comes compare it to all images and select the most similar. Classify accordingly.

•	
	Probability
Bird	0.2
Dog	0.1
	•••
Cat	0.15
Plane	0.19

		r	Parame (gener eferred Weigh	eters ally to as i ts)
			•	,
nn.predict(ima	ge, W)			
		Probability		
	Bird	0.2		
	Dog	0.1		
	•••			
	Cat	0.15		
	Plane	0.19		

def predict(image, W): W*image

nn.predict(image, W)

	Probability
Bird	0.2
Dog	0.1
Cat	0.15
Plane	0.19

CIFAR10 Bird Example 32 * 32 = 1024 Pixels

32 Columns of Pixels

32 Columns of Pixels

image: A vector of length 3072 - [0,12,3,2, 392] where each value represents a pixel in one of the three color bands.

def predict(image, W): W*image

W: A 10x3072 matrix, with each of ten "columns" indicating the value to multiply by each pixel to generate a probability.

32 Columns of Pixels

def predict(image, W): W*image

W*image: A 10 x 1 matrix in which each value is the probability of class inclusion.

CIFAR10 Bird Example

def predict(image, W): W*image

				56
56)	231	L	231
		1		24
24		2		2
1000		10.0		

0.2	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

def predict(image, W): W*image

0.2	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9

def predict(image, W): W*image

<mark>0.2</mark>	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9

def predict(image, W): W*image

<mark>0.2</mark>	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score = -97.9 Bird Score = 434.7 Plane Score = 63.15

airplane	2	-	1	r	-	-	R	N.	V	-
automobile		S.	二方		2	7		6	1	-
bird	4		K	1	-	4	1	2	3.	-
cat	-	10	-		(SP)			1	-	
deer	. ke	30		X	m.	-	.	-	1	
dog	T)	1	A-	B.		ġ	E.	1	A	SE
frog	3	P	50	1	Cer.	1		7	No.	12
horse	-	37	RA	P	5	A	1ª	2	12	the
ship	-	-	進	3	-	-32	-	111-	-	-
truck	-	E		-	200	AN A	and the second	1 in	PP 1	T

truck

ship

Loss Function

A single score that quantifies how bad a classification is.

Cat Score = -97.9 Bird Score = 3.5 Plane Score = 63.15

32 Rows of Pixels

32 Columns of Pixels

Optimization Strategy

Finding the Weights that minimize the loss function.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

f(image, W) = scores

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

 $\sum_{i=1}^{N=3} \{ (x_i, y_i) \}$

3 images (indexed i=1, i=2, i=3). Each image has image data (xi) and a label (yi).

For example:

y1 = "Cat"

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Total Loss = $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Total Loss = $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Total Loss = $\frac{1}{N} \sum_{i}^{N} Loss_i(f(x_i, W), y_i)$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

$$\sum_{\substack{j \neq y_i}}^{\textit{Multiclass SVM Loss}} \max(0, s_j - s_{y_i} + \varepsilon)$$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss $max(0, s_j - s_{y_i} + \varepsilon)$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

$$J \qquad \qquad \text{Multiclass SVM Loss} \\ \sum_{j \neq y_i} max(0, s_j - s_{y_i} + \varepsilon)$$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

44

$$\sum_{\substack{j \neq y_i}}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss $\max(0,s_j-s_{y_i}+\varepsilon)$ $j \neq y_i$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Image X_1 (Cat) Loss:

max(0, **5.1** - **3.2** + 1) = max(0, 2.9) =2.9

J **Multiclass SVM Loss** $max(0, s_j - s_{y_i} + \varepsilon)$ $j \neq y_i$

Cat	<mark>3.2</mark>	1.3	2.2
Car	<mark>5.1</mark>	4.9	2.5
Frog	-1.7	2.0	-3.1

Image X_1 (Cat) Loss:

<u>Car</u> max(0, 5.1 - 3.2 + 1) =max(0, 2.9) =2.9

 $\frac{Frog}{max(0, -1.7 - 3.2 + 1)} = max(0, -3.9) = 0$

Multiclass SVM Loss $max(0, \overline{s_j} - \overline{s_{y_i}} + \varepsilon)$ $j \neq y_i$

Cat	<mark>3.2</mark>	1.3	2.2
Car	<mark>5.1</mark>	4.9	2.5
Frog	<mark>-1.7</mark>	2.0	-3.1

Image X_2 (Car) Loss:

<u>Cat</u> max(0, **1.3** - **4.9** + 1) = max(0, -2.6) = **0**

<u>Frog</u> max(0, <mark>2.0</mark> - <mark>4.9</mark> + 1) = max(0, -1.9) = **0**

Multiclass SVM Loss $max(0, s_j - s_{y_i} + \varepsilon)$ $j \neq y_i$

Cat	3.2	<mark>1.3</mark>	2.2
Car	5.1	<mark>4.9</mark>	2.5
Frog	-1.7	2.0	-3.1

Image X_2 (Car) Loss:

<u>Cat</u> max(0, <mark>2.2</mark> - <mark>-3.1</mark> + 1) = max(0, 6.3) = **6.3**

 $\frac{Car}{max(0, 2.5 - -3.1 + 1)} = max(0, -6.6) = 6.6$

Multiclass SVM Loss $max(0, \overline{s_j} - \overline{s_{y_i}} + \varepsilon)$ $j \neq y_i$

Cat	3.2	1.3	2.2
Car	5.1	4.9	<mark>2.5</mark>
Frog	-1.7	2.0	<mark>-3.1</mark>

Total Loss = $\frac{1}{N} \sum_{i}^{N} \frac{Loss_i(f(x_i, W), y_i)}{\sum_{j \neq y_i}^{J} max(0, s_j - s_{y_i} + \varepsilon)}$

Loss	2.9	0	12.9
Cat	3.2	1.3	<mark>2.2</mark>
Car	5.1	4.9	<mark>2.5</mark>
Frog	-1.7	2.0	<mark>-3.1</mark>

(2.9 + 0 + 12.9) / 3 = ~5.27

Loss	2.9	0	12.9
Cat	3.2	1.3	2.2
Car	5.1	4.9	<mark>2.5</mark>
Frog	-1.7	2.0	<mark>-3.1</mark>

 $j \neq y_i$

 $\sum max(0, s_j - s_{y_i} + \varepsilon)$

Total Loss = $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

Wrap Up

- Parametric Models
- Linear Classifier
 - Solving
 - Visualizing
- Loss Functions
 - Multiclass SVM Loss

