
DATA 442: 
Neural Networks & 
Deep Learning

Dan Runfola – danr@wm.edu

icss.wm.edu/data442/



icss.wm.edu2



icss.wm.edu3



icss.wm.edu4

Intra-Class 
Differences



icss.wm.edu5

Viewpoint

Intra-Class 
Differences



icss.wm.edu6

Viewpoint

Background

Intra-Class 
Differences



icss.wm.edu7

Viewpoint

Lighting

Background

Intra-Class 
Differences



icss.wm.edu8

Viewpoint

Lighting

Background

Deformation

Intra-Class 
Differences



icss.wm.edu9

Viewpoint

Lighting

Background

Deformation
Occlusion

Intra-Class 
Differences



icss.wm.edu

Recap: KNN

10

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Sum of Absolute Difference: 10

T we want to RecognizeT from Training Data



icss.wm.edu11

Th
e 

D
at

a

Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K = 5 | Distance = L2

Choose model with lowest overall 
error based on the test data only, 
use those hyperparameters to test 
how well your model performs on 
the completely independent testing 
dataset.  Report the accuracy from 
this testing dataset as your final 
“this is how good our model is”.

Te
st

in
g 

D
at

a
Tr

ai
ni

ng
 D

at
a

Va
lid

at
io

n 
D

at
a



icss.wm.edu

Building Blocks of Neural Nets: 
Linear Classification
• Parametric vs. Non Parametric

• Interpreting Linear Classifiers

• Limitations of Linear Classifiers

• Segway into Loss Functions 

12



icss.wm.edu13

CIFAR10 Dataset
(random examples generated from lab 1 code -->)

Goal: Given a new image, 
identify the correct class.

KNN approach: Record all of 
the images, and when a new 
image comes compare it to all 
images and select the most 
similar.  Classify accordingly.



icss.wm.edu14

nn.predict(image)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19



icss.wm.edu15

nn.predict(image, W)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19

Parameters 
(generally 

referred to as 
Weights)



icss.wm.edu16

nn.predict(image, W)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19

def predict(image, W):
     W*image



icss.wm.edu17

CIFAR10 Bird Example

32 R
ow

s of Pixels

32 * 32 = 
1024 Pixels

32 Columns of Pixels



icss.wm.edu18

32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072



icss.wm.edu19

32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

image: A vector of length 
3072 - [0,12,3,2, …. 392] - 
where each value 
represents a pixel in one of 
the three color bands.



icss.wm.edu20

32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

W: A 10x3072 matrix, with 
each of ten “columns” 
indicating the value to 
multiply by each pixel to 
generate a probability.



icss.wm.edu21

32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

W*image: A 10 x 1 matrix 
in which each value is the 
probability of class 
inclusion.



icss.wm.edu22

CIFAR10 Bird Example

56

24 2

231



icss.wm.edu23

56

24 2

231

def predict(image, W):
     W*image

56

231

24

2



icss.wm.edu24

56

24 2

231

def predict(image, W):
     W*image

56

231

24

2

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

Cat

Bird

Plane



icss.wm.edu25

56

24 2

231

def predict(image, W):
     W*image

56

231

24

2

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

Cat

Bird

Plane

Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9



icss.wm.edu26

56

24 2

231

def predict(image, W):
     W*image

56

231

24

2

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

Cat

Bird

Plane

Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9



icss.wm.edu27

56

24 2

231
56

231

24

2

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

Cat

Bird

Plane

Cat Score = -97.9

Bird Score = 434.7
Plane Score = 63.15



icss.wm.edu28

56

24 2

231
56

231

24

2

0.2 -0.5 0.1 2.0 Cat

0.2

0.1 2.0

-0.5

Image (Matrix) to Vector

Weights Vector to Image



icss.wm.edu29 http://cs231n.stanford.edu/



icss.wm.edu30

32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072 Pixels



icss.wm.edu31

Loss Function

A single score that 
quantifies how bad 
a classification is.

Cat Score = -97.9

Bird Score = 3.5
Plane Score = 63.15



icss.wm.edu32

Optimization Strategy

Finding the Weights 
that minimize the loss 

function.

32 Columns of Pixels

32 R
ow

s of Pixels

1024 * 3 = 
3072 Pixels

So you need 3072 
weights per class 
(in a linear 
classifier)!



icss.wm.edu33 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1



icss.wm.edu34 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores



icss.wm.edu35 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

3 images (indexed i=1, i=2, i=3).
Each image has image data (xi) 
and a label (yi).

For example:

x1 = 

y1 = “Cat”



icss.wm.edu36 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.



icss.wm.edu37 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.



icss.wm.edu38 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.



icss.wm.edu39 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.



icss.wm.edu40 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.



icss.wm.edu41 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

J is the total number of 
classes, represented by index 
j.  In the current example, j=1 
would be “Cat”, j=2 would be 
“Car”, etc.

s is the score for a given 
category.  For the first image 
(the Cat), s_1 would be 3.2, 
s_2 would be 5.1, and s_3 
would be -1.7.

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss



icss.wm.edu42 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

J is the total number of 
classes, represented by index 
j.  In the current example, j=1 
would be “Cat”, j=2 would be 
“Car”, etc.

s is the score for a given 
category.  For the first image 
(the Cat), s_1 would be 3.2, 
s_2 would be 5.1, and s_3 
would be -1.7.

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss



icss.wm.edu43 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

J is the total number of 
classes, represented by index 
j.  In the current example, j=1 
would be “Cat”, j=2 would be 
“Car”, etc.

s is the score for a given 
category.  For the first image 
(the Cat), s_1 would be 3.2, 
s_2 would be 5.1, and s_3 
would be -1.7.

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss



icss.wm.edu44 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

J is the total number of 
classes, represented by index 
j.  In the current example, j=1 
would be “Cat”, j=2 would be 
“Car”, etc.

s is the score for a given 
category.  For the first image 
(the Cat), s_1 would be 3.2, 
s_2 would be 5.1, and s_3 
would be -1.7.

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss



icss.wm.edu45 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss



icss.wm.edu46 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_1 (Cat) Loss:

max(0, 5.1 - 3.2 + 1) =
max(0, 2.9) =
2.9



icss.wm.edu47 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_1 (Cat) Loss:

Car
max(0, 5.1 - 3.2 + 1) =
max(0, 2.9) =
2.9

Frog
max(0, -1.7 - 3.2 + 1) =
max(0, -3.9) =
0



icss.wm.edu48 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_2 (Car) Loss:

Cat
max(0, 1.3 - 4.9 + 1) =
max(0, -2.6) =
0

Frog
max(0, 2.0 - 4.9 + 1) =
max(0, -1.9) =
0



icss.wm.edu49 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_2 (Car) Loss:

Cat
max(0, 2.2 - -3.1 + 1) =
max(0, 6.3) =
6.3

Car
max(0, 2.5 - -3.1 + 1) =
max(0, -6.6) =
6.6



icss.wm.edu50 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Loss 2.9 0 12.9

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1



icss.wm.edu51 Images CC Attribution, Left to Right: Yutaka Fujiki, Grant C., Zion National Park  

Loss 2.9 0 12.9

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

(2.9 + 0 + 12.9) / 3 = 
~5.27



icss.wm.edu

Wrap Up

• Parametric Models

• Linear Classifier
• Solving
• Visualizing

• Loss Functions
• Multiclass SVM Loss

52


