
DATA 442: 
Neural Networks & 
Deep Learning

Dan Runfola – danr@wm.edu

icss.wm.edu/data442/
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Recap: KNN
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T we want to RecognizeT from Training Data
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Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K = 5 | Distance = L2

Choose model with lowest overall 
error based on the test data only, 
use those hyperparameters to test 
how well your model performs on 
the completely independent testing 
dataset.  Report the accuracy from 
this testing dataset as your final 
“this is how good our model is”.

Te
st

in
g 

D
at

a
Tr

ai
ni

ng
 D

at
a

Va
lid

at
io

n 
D

at
a



icss.wm.edu

Building Blocks of Neural Nets: 
Linear Classification
• Parametric vs. Non Parametric

• Interpreting Linear Classifiers

• Limitations of Linear Classifiers

• Segway into Loss Functions 

12
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CIFAR10 Dataset
(random examples generated from lab 1 code -->)

Goal: Given a new image, 
identify the correct class.

KNN approach: Record all of 
the images, and when a new 
image comes compare it to all 
images and select the most 
similar.  Classify accordingly.
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nn.predict(image)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19
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nn.predict(image, W)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19

Parameters 
(generally 

referred to as 
Weights)
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nn.predict(image, W)

Probability

Bird 0.2

Dog 0.1

... ...

Cat 0.15

Plane 0.19

def predict(image, W):
     W*image
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CIFAR10 Bird Example

32 R
ow

s of Pixels

32 * 32 = 
1024 Pixels

32 Columns of Pixels
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32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
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32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

image: A vector of length 
3072 - [0,12,3,2, …. 392] - 
where each value 
represents a pixel in one of 
the three color bands.
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32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

W: A 10x3072 matrix, with 
each of ten “columns” 
indicating the value to 
multiply by each pixel to 
generate a probability.
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32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072

def predict(image, W):
     W*image

W*image: A 10 x 1 matrix 
in which each value is the 
probability of class 
inclusion.
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CIFAR10 Bird Example
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def predict(image, W):
     W*image
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def predict(image, W):
     W*image
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Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9
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def predict(image, W):
     W*image
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Cat Score = (56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9
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Cat Score = -97.9

Bird Score = 434.7
Plane Score = 63.15
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32 Columns of Pixels

CIFAR10 Bird Example

32 R
ow

s of Pixels

1024 * 3 = 
3072 Pixels
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Loss Function

A single score that 
quantifies how bad 
a classification is.

Cat Score = -97.9

Bird Score = 3.5
Plane Score = 63.15
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Optimization Strategy

Finding the Weights 
that minimize the loss 

function.

32 Columns of Pixels

32 R
ow

s of Pixels

1024 * 3 = 
3072 Pixels

So you need 3072 
weights per class 
(in a linear 
classifier)!
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

3 images (indexed i=1, i=2, i=3).
Each image has image data (xi) 
and a label (yi).

For example:

x1 = 

y1 = “Cat”
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

ƒ(image, W) = scores

where N is the total number of 
images (i.e., 3), i is a unique 
index for each image, x_i is 
the image itself, y_i is the 
image label, Loss_i is the loss 
for that image, and W is the 
weights being tested.
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Cat 3.2 1.3 2.2
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

J is the total number of 
classes, represented by index 
j.  In the current example, j=1 
would be “Cat”, j=2 would be 
“Car”, etc.

s is the score for a given 
category.  For the first image 
(the Cat), s_1 would be 3.2, 
s_2 would be 5.1, and s_3 
would be -1.7.

Epsilon (ε) is a tolerance 
term, essentially defining how 
sure the algorithm needs to 
be about a class before we 
call it right.

Multiclass SVM Loss
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_1 (Cat) Loss:

max(0, 5.1 - 3.2 + 1) =
max(0, 2.9) =
2.9
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_1 (Cat) Loss:

Car
max(0, 5.1 - 3.2 + 1) =
max(0, 2.9) =
2.9

Frog
max(0, -1.7 - 3.2 + 1) =
max(0, -3.9) =
0
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_2 (Car) Loss:

Cat
max(0, 1.3 - 4.9 + 1) =
max(0, -2.6) =
0

Frog
max(0, 2.0 - 4.9 + 1) =
max(0, -1.9) =
0
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Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

Multiclass SVM LossIf we set Epsilon = 1

Image X_2 (Car) Loss:

Cat
max(0, 2.2 - -3.1 + 1) =
max(0, 6.3) =
6.3

Car
max(0, 2.5 - -3.1 + 1) =
max(0, -6.6) =
6.6
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Loss 2.9 0 12.9

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1
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Loss 2.9 0 12.9

Cat 3.2 1.3 2.2

Car 5.1 4.9 2.5

Frog -1.7 2.0 -3.1

(2.9 + 0 + 12.9) / 3 = 
~5.27
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Wrap Up

• Parametric Models

• Linear Classifier
• Solving
• Visualizing

• Loss Functions
• Multiclass SVM Loss

52


