DATA 442:
Neural Networks &
Deep Learning
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Some Reminders

Plazza
| - and the TAs - are checking Piazza regularly.

Lab 1

Launches at midnight tonight! See Piazza for the deadline.
We'll be covering the content for lab 1 over the next couple of
lectures.
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Image Classification

We must pre-specify a set of labels
that we want to choose between.
For example:

Car
Building
Person
Bird
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Viewpoint
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Lighting




Background
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Background

%
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Deformation
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Deformation
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Occlusion

%
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12 Row * 10 Column
Resolution Data



- 1mageClassifier(letter):

predictedLabel = "Some Letter

eturn(predictedLabel)

print(imageClassifier(letterT))
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imageClassifier(letter):

intersections =

if(intersections == 1):
predictedLabel = "T'

f%jJFﬂ(prediCtedLabel)

print(imageClassifier(letterT))

J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:
17 10.1109/TPAMI.1986.4767851.
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J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:
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Machine Learning & Al
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train(observedImages, humanLabels):

2) Train a Classifier
irn imageClassifier

- predict(imageClassifier, myNewImage): 3) Test How Well It Does
T preds etedlabel on Data It’s Never Seen

i~



Nearest Neighbor & Imagery

train(observedImages, humanLabels):

1) Saves All Observations into Memory

return imageClassifier

predict(imageClassifier, myNewlImage): 2) Compares and Contrasts Input to all
, Observations to Select Most Similar

rn predictedLabel
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T from Training Data T to Recognize
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T from Training Data T to Recognize
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Nearest Neighbor - L1 Distance

Ll(IlaI2) = Z |Il,P o I2>P|
p

L, = L1 Distance

I, = Image 1

p = Index for a given pixel in image

Ii,P = Value for a given pixel p in image I Sum of Absolute Difference: 10

[0
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T from Training Data T we want to Recognize
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Li(liyla) =, | hp— o 4

p
L1 = L1 Distance
I, = Image 12
p = Index for a given pixel in image

I; , = Value for a given pixel p in image [

iport numpy as np
LINorm(imageA, imageB):

print("Total number of black

str(np.sum(imageA)))

print("Total number of black pixels in
str(np.sum(imageB)))

pixelWiseDiff = str(np.sum(np.abs(np.asarray(imageA) - np.asarray(imageB))))
print("Absolute pixelwise difference: " +
pixelWiseDiff)

return(pixelWiseDiff)

LiNorm([letterT, testedT]) Total number of black pixels in Image A: 32
= : Total number of black pixels in Image B: 30
Absolute pixelwise difference: 10
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training["I"] = letterl

testedT

predictlLetter

{}
training:

estimates

1 in

N

LiINorm(training[1l], predictlLetter)

distance

distance

estimates[1]

print(estimates)

Training Data

letterT =
letterl =

letterl




Interlude - Numpy
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np.asarray(letterT)

letterT

print(letterT)
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A toy nearest neighbor classifier

Ma=srac+
NEal €5 L

init  (self):

)ad S S

leighborsingl

- train(self, X, y):

F.Xtr X
ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = .ytriminimumDistance]

irn Ypred




A toy nearest neighbor classifier

Ma=srac+
NEal €5 L

init  (self):

)ad S S

leighborsingl

- train(self, X, y):

F.Xtr X
ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = .ytriminimumDistance]

irn Ypred




A toy nearest neighbor classifier

NearestNeighborSing

init  (self):

NAacc
'a

- train(self, X, y):

LT XTr X
Lf.ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = Lf.ytr[minimumDistance]

irn Ypred

trainingX [letterT, letterI, letterl]
trainingy np.array(["T", "I", "1"])

nn = NearestNeighborSinglePrediction()
nn.train(X=trainingX, y=trainingy)

estimates = nn.predict(X=[testLetter])

print(estimates)




A toy nearest neighbor classifier

NearestNeighborSing

init  (self):

NAacc
'a

- train(self, X, y):

2 LT.XTtr X
If.ytr =y for 1 in training:
distance = L1Norm(training[l], predictLetter)
predict(self, X): estimates[l] = distance
l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)
Ypred = Lf.ytr[minimumDistance]

irn Ypred




A toy nearest neighbor classifier
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A toy nearest neighbor classifier

NearestNeighbor:
init_ (self):

pass
nn = NearestNeighbor()

nn.train(X=trainingX, y=trainingy)

f train(self, X, y):
estimates = nn.predict(X=[testLetter, testLetter2])

Xtr = X

=lf.ytr =y print(estimates)

predict(self, X):

Ypred = np.zeros(len(X), dtype=np.dtype(self.ytr.dtype))

r i in range(0, len(X)):
l1Distances = np.sum(np.abs(self.Xtr - X[i]), axis=1)
minimumDistance = np.argmin(l1lDistances)
Ypred[i] = self.ytr[minimumDistance]

return Ypred




A toy nearest neighbor classifier

NearestNeighbor:

s Slow! We have to
compare every single
case in our training data

XTr .
1t ytr to every input.

f train(self,

f predict(self, X):

Ypred = np.zeros(len(X), dtype=np.dtype(self.ytr.dtype))

for 1 in range(©, len(X)):
l1Distances = np.sum(np.abs(self.Xtr - X[i]), axis=1)
minimumDistance = np.argmin(l1lDistances)
Ypred[i] = self.ytr[minimumDistance]

irn Ypred




Example: Nearest Neighbor & CIFAR 10
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.
35 https://www.cs.toronto.edu/~kriz/cifar.html icss.wm.edu @

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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K Nearest Neighbors

In this example, we have multiple examples of
letters we're using for training. Every red dot is an
“A”, and every blue dot is a “T”. The yellow dot is
representative of a hand-written T, that we're
trying to identify the letter of.

Red = Examples of Letter A
Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image
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K Nearest Neighbors

Most similar letter with a L1 Distance of ~10.
Red = Examples of Letter A

/_H Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image
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K=3 Nearest Neighbors

Red = Examples of Letter A
A Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image
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Eldi ‘f %P)r-n

N=2 N=6 N=7 N=10
Airplane 0 0 0 20% 16% 14% 13% 22% 20%
Car 0 0 0 0 0 0 13% 1% 10%
Bird 0 0 0 0 0 0 0 0 0
Deer 0 0 0 0 0 0 0 0 0
Dog 0 0 0 0 0 0 0 0 0
Horse 0 0 0 0 0 0 0 0 0
Ship 0 0 0 0 0 0 0 0 10%
Truck 0 0 0 0 0 0 0 0 0

"
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KNN - Distance Metric pt 2.
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KNN - Distance Metric pt 2.

L, L)=Y|h,—L,  L2(,L)= \/zm,p — I p)?
P

p
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Hyperparameters

How do we choose the right K?
How do we choose between L1 and L2?

Both of these are hyperparameters - settings we choose about
the algorithm that are not learned from the data.
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Choosing Hyperparameters

) Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

el 95 8= 6 | IPTkiETes = L Choose model with lowest overall

error, use those hyperparameters.
All data is used for fitting and
accuracy calculation.

The Data
Y

Model 6: K= 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K =5 | Distance = L2

i
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Choosing Hyperparameters

) Model 1: K= 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K =5 | Distance = L1

Choose model with lowest overall
error based on the test data, use

Model 6: K= 1 | Distance = L2 those hyperparameters.

> >

The Data
[

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K =4 | Distance = L2

Model 0: K =5 | Distance = L2

i
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Choosing Hyperparameters

Model 1: K= 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1 V

) Choose model with lowest overall
Model 4: K = 4 | Distance = L1 error based on the test data only,
Model 5: K = 5 | Distance = L1 use those hyperparameters to test
how well your model performs on
the completely independent testing
dataset. Report the accuracy from
Model 6: K = 1 | Distance = L2 Ehis_ tt_asting dataset as your fi_nal
‘this is how good our model is”.

The Data

e Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K =4 | Distance = L2

Model 0: K =5 | Distance = L2

i
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48

Cross Validation

The Data

Model 1: K = 1| Distance = L1
Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K = 5 | Distance = L2

Model 0: K =5 | Distance = L2

Model 0: K = 5 | Distance = L2

Model 0: K = 5 | Distance = L2

Choose model with lowest overall error (1) across all folds [i.e.,

using voting], and (2) based on the test data only, use those
hyperparameters to test how well your model performs on the —

completely independent testing dataset. Report the accuracy from
this testing dataset as your final “this is how good our model is”.

A
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KNN

Great as an example for some basic machine learning
terminology.

Not great for actual use.
Operational use very slow (training is fast, prediction is slow).
Simple distance metrics can’t capture perceptual differences that
matter.
“Curse of Dimensionality”
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Dimensionality of Images

*“Normal Data”

Dimensions: 2

[
Observation Height @ Weight
A 3ft 10Ib
[
B 4ft 20Ib
C 5ft 30Ib
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Dimensionality of Images

*“Normal Data”

Dimensions: 2

Observation Height @ Weight

A 3ft 10Ib
B 4t 20Ib
C Sft 30Ib

51 icss.wm.edu X



Dimensionality of Images

*“Normal Data”

Dimensions: 2

52

Observation Height | Weight | Age
A 3ft 10lb 5
B 4ft 20Ib 5
C 5ft 30Ib 5
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Dimensionality of Images

Image Data

Dimensions: Thousands

Observations: 3

53

Observation Pixel 1 Pixel 2 Pixel 12000 Pixel 12001
A 10 10 25 85
B 20 20 35 75
C 30 30 65 95
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Recap

- We are exploring the topic of image classification, in which we are using a large training
set of images that have human-created labels, and we are using this to predict the correct
labels for a test set of data.

- KNN is an example of how you can do this, though not a good one. It predicts based on
the nearest training example.

- In the case of KNN, the distance metric (L1 vs. L2) and K are the hyperparameters you
must choose.

- A validation set and test set allow you to choose appropriate hyperparameters.

- For small datasets, cross-fold validation can improve the robustness of your results.
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Reminders

Remember to check in on Piazza with any questions!
Piazza will also have information on the first lab.

Group study is encouraged, but your submissions should be
your own!
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