DATA 442:
Neural Networks &
Deep Learning

Dan RU nf()la — danr@wm.edu
Icss.wm.edu/datad442/

Some Reminders

Plazza
| - and the TAs - are checking Piazza regularly.

Lab 1

Launches at midnight tonight! See Piazza for the deadline.
We'll be covering the content for lab 1 over the next couple of
lectures.

2 icss.wm.edu 2@

Image Classification

We must pre-specify a set of labels
that we want to choose between.
For example:

Car
Building
Person
Bird

icss.wm.edu E

14

42
21
30
135
106
122
149
147

37
39
10
35
105
133
142
142
137
115

34 3
19| 25

15| 19
19 30
147 102
137 108
108 138
127131
122 36

3 29

8
6
15
24
14
126
140
137
143
50
10

30 50
9 14

18 111
143 146
118 108
144 135

(o2}

a7
19 24
2 13

26
17

123
147
101
120

16

21
118
142

28

10
104
103
131
137

41
20

6
E

23
38

8 45 150
119 122
109 127
124 136

125
19
39

2
45

43
44
18

17
108
a7
8
34
46
2

39

2
6

24
29

145 106
140 138

148
27
31

35
14

20
26
45
38
50
29
14

28

28
23
38
10
49
25
50
20

icss.wm.edu @

3 40 34 3 8 30 50 26 16 28 41 6 23 2 24 0O
14 37 19 25 6 9 14 17 4| 46 20 7 38 6 29 28
4 33 0 29 15 50 ;

42 10 15 19 24
[30 14

20 23
27 26 38
31 45 10

4 38 49
150 25

= I 25
47 - 35 29 5C
39 14 14 20

S

%

5 icss.wm.edu

30 50 26 16 28 41 6
. 9] 14| 17| 4§46 20 7
23 36 34 21 10 8 45

23 36 4

14
28

22 32 1 19 44
a1 1 0 31 39 18 46
16 30 2 47

43 12 19 40 26 48 3 45 28

&
8
g

L Ll
% &

6 icss.wm.edu @f

Viewpoint

7 icss.wm.edu E

Lighting

Background

9 icss.wm.edu ﬁ

Background

%

icss.wm.edu E

10

Deformation

1 icss.wm.edu

Deformation

icss.wm.edu E

Occlusion

%

icss.wm.edu E

13

12 Row * 10 Column
Resolution Data

- 1mageClassifier(letter):

predictedLabel = "Some Letter

eturn(predictedLabel)

print(imageClassifier(letterT))

rn{predictedLabel)

U |

predictedLabel

if(sum(letter

-~ imageClassifier(letter):

T
| -
v
4
)
L
qond
Q
o
Y
-r
)
("))
0
-
o
QL
(&)
18]
e
=
o+
==
i
(=R

0
0]

32 “1” Values
© 6 0 0 0 0
O 0 0 0 ©

© 0 0 0

letterT = [0 0 ©O

imageClassifier(letter):

intersections =

if(intersections == 1):
predictedLabel = "T'

f%jJFﬂ(prediCtedLabel)

print(imageClassifier(letterT))

J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:
17 10.1109/TPAMI.1986.4767851.

%

J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi:

18 10.1109/TPAMI.1986.4767851. iCSS.Wm.Edu E

Machine Learning & Al

me R TiE o W% ™
54 8 T2 E B 4% Ak 1) Curate / Label a Huge
.‘ .- m! QE "‘ EE ﬂﬂ Dataset of Images

A% Ot @l T Oa o
=0 S s Le LE BE
oil <1 EE B vl e

o

train(observedImages, humanLabels):

2) Train a Classifier
irn imageClassifier

- predict(imageClassifier, myNewImage): 3) Test How Well It Does
T preds etedlabel on Data It’s Never Seen

i~

Nearest Neighbor & Imagery

train(observedImages, humanLabels):

1) Saves All Observations into Memory

return imageClassifier

predict(imageClassifier, myNewlImage): 2) Compares and Contrasts Input to all
, Observations to Select Most Similar

rn predictedLabel

- - p—

COOOOOOOOO OO
COOOOOOOO O DD
CoococOoOCCEEE® O
COCOOOOOO000 @
DI A H -
D o e
cCoocooO 00
PCOoOOPOO0 O ®
CoOoOoOO O ®®

- - -~ -

(ol oo oMo R ORONO)

Data

ining

- - - - - - - - -

[ololloBoNoRBoNoROoRNORBORO

(o]
I
w
[
4
o+
Q
-

Example Tra

21

T from Training Data T to Recognize

y B X
| ll |

T from Training Data T to Recognize

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1

ol

23 icss.wm.edu @

Nearest Neighbor - L1 Distance

Ll(IlaI2) = Z |Il,P o I2>P|
p

L, = L1 Distance

I, = Image 1

p = Index for a given pixel in image

Ii,P = Value for a given pixel p in image I Sum of Absolute Difference: 10

[0

B N s N B N e N e N . N e N
e s N B N . N B N . N e e N BN

N e N e N e N e e N e N
N e N e N e N e N . N Y YN

T from Training Data T we want to Recognize

vy

24 icss.wm.edu

Li(liyla) =, | hp— o 4

p
L1 = L1 Distance
I, = Image 12
p = Index for a given pixel in image

I; , = Value for a given pixel p in image [

iport numpy as np
LINorm(imageA, imageB):

print("Total number of black

str(np.sum(imageA)))

print("Total number of black pixels in
str(np.sum(imageB)))

pixelWiseDiff = str(np.sum(np.abs(np.asarray(imageA) - np.asarray(imageB))))
print("Absolute pixelwise difference: " +
pixelWiseDiff)

return(pixelWiseDiff)

LiNorm([letterT, testedT]) Total number of black pixels in Image A: 32
= : Total number of black pixels in Image B: 30
Absolute pixelwise difference: 10

I
[
o

1))
]

v

Q
4=

letterT

1] -

training|

training[”

training["I"] = letterl

testedT

predictlLetter

{}
training:

estimates

1 in

N

LiINorm(training[1l], predictlLetter)

distance

distance

estimates[1]

print(estimates)

Training Data

letterT =
letterl =

letterl

Interlude - Numpy

D
© G

(oo oMo Moo ORO

np.asarray(letterT)

letterT

print(letterT)

(o]
-4
-4
(o]
(o]
(o]
(o]
(o]
-4
-4
-4
-4
-4
-4
-4
-4
(o]
(o]
-4
-4
-4
-4
-4
-4
-4
-4
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
MU..

000000011 000000001100000000110000000020
1100000000110000000011000000001100000

O0000000 0]

A toy nearest neighbor classifier

Ma=srac+
NEal €5 L

init (self):

)ad S S

leighborsingl

- train(self, X, y):

F.Xtr X
ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = .ytriminimumDistance]

irn Ypred

A toy nearest neighbor classifier

Ma=srac+
NEal €5 L

init (self):

)ad S S

leighborsingl

- train(self, X, y):

F.Xtr X
ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = .ytriminimumDistance]

irn Ypred

A toy nearest neighbor classifier

NearestNeighborSing

init (self):

NAacc
'a

- train(self, X, y):

LT XTr X
Lf.ytr y

predict(self, X):

l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)

Ypred = Lf.ytr[minimumDistance]

irn Ypred

trainingX [letterT, letterI, letterl]
trainingy np.array(["T", "I", "1"])

nn = NearestNeighborSinglePrediction()
nn.train(X=trainingX, y=trainingy)

estimates = nn.predict(X=[testLetter])

print(estimates)

A toy nearest neighbor classifier

NearestNeighborSing

init (self):

NAacc
'a

- train(self, X, y):

2 LT.XTtr X
If.ytr =y for 1 in training:
distance = L1Norm(training[l], predictLetter)
predict(self, X): estimates[l] = distance
l1Distances = np.sum(np.abs(self.Xtr - X[0]), axis=1)
minimumDistance = np.argmin(l1Distances)
Ypred = Lf.ytr[minimumDistance]

irn Ypred

A toy nearest neighbor classifier

]
—
o

b
)

2]

)
)

A toy nearest neighbor classifier

NearestNeighbor:
init_ (self):

pass
nn = NearestNeighbor()

nn.train(X=trainingX, y=trainingy)

f train(self, X, y):
estimates = nn.predict(X=[testLetter, testLetter2])

Xtr = X

=lf.ytr =y print(estimates)

predict(self, X):

Ypred = np.zeros(len(X), dtype=np.dtype(self.ytr.dtype))

r i in range(0, len(X)):
l1Distances = np.sum(np.abs(self.Xtr - X[i]), axis=1)
minimumDistance = np.argmin(l1lDistances)
Ypred[i] = self.ytr[minimumDistance]

return Ypred

A toy nearest neighbor classifier

NearestNeighbor:

s Slow! We have to
compare every single
case in our training data

XTr .
1t ytr to every input.

f train(self,

f predict(self, X):

Ypred = np.zeros(len(X), dtype=np.dtype(self.ytr.dtype))

for 1 in range(©, len(X)):
l1Distances = np.sum(np.abs(self.Xtr - X[i]), axis=1)
minimumDistance = np.argmin(l1lDistances)
Ypred[i] = self.ytr[minimumDistance]

irn Ypred

Example: Nearest Neighbor & CIFAR 10

aipane joct I B 7 - (50 I O 60,000 Images
e IEEDEMSEES 50000 Traming
e EmBNESFEEE 0000 Testin
cat a. ’! , g
deer "':';" .

N ol Bl e oA 32 x 32 Pixels
oo 0 O
ose SRR EIPMEZTETE 10 Classes (shown to left)
o e 0 S

.
35 https://www.cs.toronto.edu/~kriz/cifar.html icss.wm.edu @

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

icss.wm.edu 2@

RN BENENE
SIN B BB 1] |
ELEENESA INEE
EFEvEHe lIEN
BEE"EA<vyuEN
A NSNS
H¥ivEe ISHE
B A«AWiIEER
ECEVAS SERR
G [T
tttttt1111
Syl RN LR P -

)

K Nearest Neighbors

In this example, we have multiple examples of
letters we're using for training. Every red dot is an
“A”, and every blue dot is a “T”. The yellow dot is
representative of a hand-written T, that we're
trying to identify the letter of.

Red = Examples of Letter A
Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image

37 icss.wm.edu 2@

K Nearest Neighbors

Most similar letter with a L1 Distance of ~10.
Red = Examples of Letter A

/_H Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image

38 icss.wm.edu E

K=3 Nearest Neighbors

Red = Examples of Letter A
A Blue = Examples of Letter T

0 10 20 30 40 50

Pixelwise Difference Between Test Image and Observed Image

39 icss.wm.edu 2@

icss.wm.edu 2@

RN BENENE
SIN B BB 1] |
ELEENESA INEE
EFEvEHe lIEN
BEE"EA<vyuEN
A NSNS
H¥ivEe ISHE
B A«AWiIEER
ECEVAS SERR
G [T
tttttt1111
Syl RN LR P -

)

41

Eldi ‘f %P)r-n

N=2 N=6 N=7 N=10
Airplane 0 0 0 20% 16% 14% 13% 22% 20%
Car 0 0 0 0 0 0 13% 1% 10%
Bird 0 0 0 0 0 0 0 0 0
Deer 0 0 0 0 0 0 0 0 0
Dog 0 0 0 0 0 0 0 0 0
Horse 0 0 0 0 0 0 0 0 0
Ship 0 0 0 0 0 0 0 0 10%
Truck 0 0 0 0 0 0 0 0 0

"

icss.wm.edu @

42

KNN - Distance Metric pt 2.

L, L)=Y|h,—L, L2(,L)= \/zm,p — I p)?
P

p

WQ‘ WZ‘

[-norm [“norm

-1
7/ N ¥
/ 2 // <X
/
// \\ I [\\ m
J \ p
wig |

N

icss.wm.edu Cz@

KNN - Distance Metric pt 2.

L, L)=Y|h,—L, L2(,L)= \/zm,p — I p)?
P

p

43

[-norm

wl

[“norm

Wi

S
7

/

/
Wi |

N

icss.wm.edu Cz@

Hyperparameters

How do we choose the right K?
How do we choose between L1 and L2?

Both of these are hyperparameters - settings we choose about
the algorithm that are not learned from the data.

44 icss.wm.edu E

Choosing Hyperparameters

) Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

el 95 8= 6 | IPTkiETes = L Choose model with lowest overall

error, use those hyperparameters.
All data is used for fitting and
accuracy calculation.

The Data
Y

Model 6: K= 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K =5 | Distance = L2

i

45 icss.wm.edu E

Choosing Hyperparameters

) Model 1: K= 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K =5 | Distance = L1

Choose model with lowest overall
error based on the test data, use

Model 6: K= 1 | Distance = L2 those hyperparameters.

> >

The Data
[

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K =4 | Distance = L2

Model 0: K =5 | Distance = L2

i

46 icss.wm.edu E

Choosing Hyperparameters

Model 1: K= 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1 V

) Choose model with lowest overall
Model 4: K = 4 | Distance = L1 error based on the test data only,
Model 5: K = 5 | Distance = L1 use those hyperparameters to test
how well your model performs on
the completely independent testing
dataset. Report the accuracy from
Model 6: K = 1 | Distance = L2 Ehis_ tt_asting dataset as your fi_nal
‘this is how good our model is”.

The Data

e Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K =4 | Distance = L2

Model 0: K =5 | Distance = L2

i

47 icss.wm.edu E

48

Cross Validation

The Data

Model 1: K = 1| Distance = L1
Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 1: K = 1 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 2: K = 2 | Distance = L1

Model 3: K = 3 | Distance = L1

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 4: K = 4 | Distance = L1

Model 5: K = 5 | Distance = L1

Model 6: K = 1 | Distance = L2

Model 7: K = 2 | Distance = L2

Model 8: K = 3 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 9: K = 4 | Distance = L2

Model 0: K = 5 | Distance = L2

Model 0: K =5 | Distance = L2

Model 0: K = 5 | Distance = L2

Model 0: K = 5 | Distance = L2

Choose model with lowest overall error (1) across all folds [i.e.,

using voting], and (2) based on the test data only, use those
hyperparameters to test how well your model performs on the —

completely independent testing dataset. Report the accuracy from
this testing dataset as your final “this is how good our model is”.

A

icss.wm.edu E

KNN

Great as an example for some basic machine learning
terminology.

Not great for actual use.
Operational use very slow (training is fast, prediction is slow).
Simple distance metrics can’t capture perceptual differences that
matter.
“Curse of Dimensionality”

49 icss.wm.edu 2@

Dimensionality of Images

*“Normal Data”

Dimensions: 2

[
Observation Height @ Weight
A 3ft 10Ib
[
B 4ft 20Ib
C 5ft 30Ib

50 icss.wm.edu

Dimensionality of Images

*“Normal Data”

Dimensions: 2

Observation Height @ Weight

A 3ft 10Ib
B 4t 20Ib
C Sft 30Ib

51 icss.wm.edu X

Dimensionality of Images

*“Normal Data”

Dimensions: 2

52

Observation Height | Weight | Age
A 3ft 10lb 5
B 4ft 20Ib 5
C 5ft 30Ib 5

icss.wm.edu X

Dimensionality of Images

Image Data

Dimensions: Thousands

Observations: 3

53

Observation Pixel 1 Pixel 2 Pixel 12000 Pixel 12001
A 10 10 25 85
B 20 20 35 75
C 30 30 65 95

icss.wm.edu

Recap

- We are exploring the topic of image classification, in which we are using a large training
set of images that have human-created labels, and we are using this to predict the correct
labels for a test set of data.

- KNN is an example of how you can do this, though not a good one. It predicts based on
the nearest training example.

- In the case of KNN, the distance metric (L1 vs. L2) and K are the hyperparameters you
must choose.

- A validation set and test set allow you to choose appropriate hyperparameters.

- For small datasets, cross-fold validation can improve the robustness of your results.

54 icss.wm.edu E

Reminders

Remember to check in on Piazza with any questions!
Piazza will also have information on the first lab.

Group study is encouraged, but your submissions should be
your own!

55 icss.wm.edu 2@

