DATA 442: Neural Networks & Deep Learning

Dan Runfola – danr@wm.edu icss.wm.edu/data442/

Generative Models

Input

Output

Given some input of images, generate an output of samples drawn from the same distribution.

Types of Generative Models

NADE/MADE

PixelRNN

Explicit Density Estimation

Variational Autoencoder Approximate Density Estimation

Boltzmann Machine

Implicit Density Estimation

GSN

PixelRNN/PixelCNN

- Explicitly calculates likelihood
 - Can help in understanding model performance
- Relatively Slow
- Makes fairly believable images
- Area of extensive inquiry PixelCNN+; PixelCNN++, PixelCNN 2.0, and many more.
 - Concept of 'Attention'

Ground Truth

Input To Net

15

25

Net prediction

http://cs231n.stanford.edu/reports/2016/pdfs/211_Report.pdf

Variational Autoencoders (VAE)

$$p(image) = \int p(z)p(x|z)dz$$

Replicated with Permission. Brewer et al. 2021.

Visualizing Filters

10 https://www.researchgate.net/publication/324005705_What_Do_We_Understand_About_Convolutional_Networksics.wm.edu

AlexNet: 64 x 3 x 11 x 11

15 Fei-Fei Li, Justin Johnson, Serena Yeung, 2017

https://cs.stanford.edu/people/karpa thy/cnnembed/

Patch-based Approaches

Occlusion

Saliency

Guided Backpropogation

²⁵ Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, 2014

icss.wm.edu

Gradient Ascent

bell pepper

lemon

husky

washing machine

computer keyboard

kit fox

26 https://arxiv.org/abs/1409.1556

ostrich

https://yosinski.com/deepvis

Summary: Understanding CNNs

- Dimensionality Reduction
- Maximal Patches
- Occlusion
- Saliency / Gradient Backpropogation
- Gradient Ascent

Deep Reinforcement Learning

State: Positions of PiecesAction: Where to move PieceReward: 1 if you win, 0 if you lose.

Formalization

Markov Property: Conditional probability distribution of the future state of a process depends only on the current state.

Set {...} of possible states

A

S

Set {...} of possible actions

R

Rewards for each (State, Action)

 \mathbb{P}

Probabilities to transition to a new state S given current state and action

Discount

1) At step t=0, the environment is defined as some initial state S_0

1) At step t=0, the environment is defined as some initial state S_0

2) Starting at t=0, and repeating until finished: A) Agent chooses an action a_t

- 1) At step t=0, the environment is defined as some initial state S_0
- 2) Starting at t=0, and repeating until finished: A) Agent chooses an action a_t B) Environment rewards action r_t

- 1) At step t=0, the environment is defined as some initial state S_0
- 2) Starting at t=0, and repeating until finished: A) Agent chooses an action a_t B) Environment rewards action r_t
 - C) Environment identifies next state S_{t+1}

- 1) At step t=0, the environment is defined as some initial state S_0
- 2) Starting at t=0, and repeating until finished:
 - A) Agent chooses an action a_t
 - B) Environment rewards action r_t
 - C) Environment identifies next state S_{t+1}
 - D) Agent receives r_t and s_{t+1}

- A) Agent chooses an action a_t
- B) Environment rewards action r_t
- C) Environment identifies next state S_{t+1}
- D) Agent receives r_t and s_{t+1}
 - $\pi\,$ Policy. Takes in State and Possible Actions, and determines what action to take.
 - Ω Constraints. Takes in State and Possible Actions, and determines what (if any) actions cannot be taken.
 - $r_t\,$ Objective Function. We seek to maximize the discounted rewards across all steps t.

Q-learning

Q-learning

State: Raw pixels of a frame of the game Actions: {Jump, Left, Right, Wait} Reward: Score increase for moving right, decrease for left

Q-Learning Network Architecture

Q-Learning Network Architecture

Q-Learning Network Architecture

ASES.			
Generative:	THE REAL	Offering:	10,90
Individual	Replay	Liferpau	Subda:
Best Filartt	0	Meteriou	Stale 7.0%
Max Distance:	2710	Cressorer	Rodette
Non Ispats:		SBXER	100.0
Trainable Paternet	Elle I	Lown	[10, 8, 4]

https://www.youtube.com/ watch?v=Cl3FRsSAa_U

