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Generative Models

Input

2

Output

Given some input of images, generate an output of samples 
drawn from the same distribution.
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Types of Generative Models

NADE/MADE
PixelRNN
Variational Autoencoder
Boltzmann Machine
GAN
GSN
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Explicit Density Estimation

Approximate Density Estimation

Implicit Density Estimation
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PixelRNN/PixelCNN

• Explicitly calculates likelihood
• Can help in understanding model performance

• Relatively Slow
• Makes fairly believable images
• Area of extensive inquiry - PixelCNN+; PixelCNN++, 

PixelCNN 2.0, and many more.
• Concept of ‘Attention’
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http://cs231n.stanford.edu/reports/2016/pdfs/211_Report.pdf
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Variational Autoencoders (VAE)
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X zEncoder XDecoder
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Z Generator 
Network

Discriminator Network Is an image real or 
Fake?

Loss



icss.wm.edu7
Replicated with Permission. Brewer et al. 2021.
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What are these activation 
functions actually 
identifying?
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Visualizing Filters

10 https://www.researchgate.net/publication/324005705_What_Do_We_Understand_About_Convolutional_Networks
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4,096 Numbers
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4,096 Numbers

4,096 Numbers
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4,096 Numbers

4,096 Numbers

PCA / t-SNE / ??

2 Numbers

2 Numbers
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icss.wm.edu20 https://arxiv.org/pdf/1802.07124.pdf https://cs.stanford.edu/people/karpa
thy/cnnembed/
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Patch-based Approaches

22 Zeiglar and Furgus, 2013
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Occlusion 

23 https://arxiv.org/pdf/1610.02391.pdf
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Saliency
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Guided Backpropogation

25 Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, 2014
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Gradient 
Ascent

26 https://arxiv.org/abs/1409.1556
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https://glassboxmedicine.com/2019/0
7/13/class-model-visualization-for-cnn
s/



icss.wm.edu28 https://arxiv.org/pdf/1506.06579.pdf https://yosinski.com/deepvis



icss.wm.edu

Summary: Understanding CNNs

• Dimensionality Reduction
• Maximal Patches
• Occlusion
• Saliency / Gradient Backpropogation
• Gradient Ascent
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Deep Reinforcement Learning
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State: Positions of Pieces
Action: Where to move Piece
Reward: 1 if you win, 0 if you lose.



icss.wm.edu

Formalization

31

Agent Environment

Action 

Reward 

Updated State 

Initial State 
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Markov Decision Process

Markov Property: Conditional probability distribution of the future 
state of a process depends only on the current state.
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Markov Decision Process
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Set {...} of possible states

Set {...} of possible actions

Rewards for each (State, Action) 

Probabilities to transition to a new state S given current state and action

Discount
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Markov Decision Process

34

1) At step t=0, the environment is defined as some initial state 
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Markov Decision Process

1) At step t=0, the environment is defined as some initial state

2) Starting at t=0, and repeating until finished:
A) Agent chooses an action  
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Markov Decision Process

1) At step t=0, the environment is defined as some initial state

2) Starting at t=0, and repeating until finished:
A) Agent chooses an action
B) Environment rewards action   
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Markov Decision Process

1) At step t=0, the environment is defined as some initial state

2) Starting at t=0, and repeating until finished:
A) Agent chooses an action
B) Environment rewards action 
C) Environment identifies next state   
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Markov Decision Process

1) At step t=0, the environment is defined as some initial state

2) Starting at t=0, and repeating until finished:
A) Agent chooses an action
B) Environment rewards action 
C) Environment identifies next state
D) Agent receives     and     
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Markov Decision Process
A) Agent chooses an action
B) Environment rewards action 
C) Environment identifies next state
D) Agent receives     and     
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Policy.  Takes in State and Possible Actions, and determines what 
action to take.

Constraints.  Takes in State and Possible Actions, and determines 
what (if any) actions cannot be taken.

Objective Function.  We seek to maximize the discounted rewards 
across all steps t.
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Q-learning

40



icss.wm.edu

Q-learning

41

State: Raw pixels of a frame of the 
game
Actions: {Jump, Left, Right, Wait}
Reward: Score increase for moving 
right, decrease for left

Objective Function.  We seek to maximize how far we go right, across 
all steps t.
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Q-Learning Network Architecture
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Initial State 

64 
Filters 
(7x7)

ReLU Dense
Output = 4

Actions: 
{Jump, Left, Right, Wait}
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Q-Learning Network Architecture
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Q-Learning Network Architecture
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Initial State 

64 
Filters 
(7x7)

ReLU Dense
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Q-Learning 
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Initial State 

64 
Filters 
(7x7)

ReLU Dense
Output = 4

Actions: 
{Jump, Left, Right, Wait}

Loss
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Q-Learning 
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Initial State 

64 
Filters 
(7x7)

ReLU Dense
Output = 4

Actions: 
{Jump, Left, Right, Wait}

Loss
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https://www.youtube.com/
watch?v=CI3FRsSAa_U

http://www.youtube.com/watch?v=CI3FRsSAa_U

