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Recurrent Neural Networks
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https://www.youtube.com/watch?v=_7SVJGTjUMI
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Long short term memory network
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Simple RNNLSTM



icss.wm.edu

Classification Models
Input
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Generative Models
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Generative Models

Input
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Output

Given some input of images, generate an output of samples 
drawn from the same distribution.
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Types of Generative Models

NADE/MADE
PixelRNN
Variational Autoencoder
Boltzmann Machine
GAN
GSN
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Types of Generative Models

NADE/MADE
PixelRNN
Variational Autoencoder
Boltzmann Machine
GAN
GSN
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Explicit Density Estimation

Approximate Density Estimation

Implicit Density Estimation
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PixelCNN (..and PixelRNN)

• Fully Visible Belief Network
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PixelCNN (..and PixelRNN)

Really complex distribution 
(conditioned on every other pixel in 
an image!)
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PixelRNN
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Starts by generating an image pixel 
in the upper-left hand corner.

Every pixel is then fed in, in order, 
following a RNN approach.

Goal is to model the probability 
distribution of all pixels by fitting the 
RNN.
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PixelRNN
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PixelRNN
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Starts by generating an image pixel 
in the upper-left hand corner.

Every pixel is then fed in, in order, 
following a RNN approach.
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PixelCNN
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Generates the probability 
distribution based on filters.

Each pixel is generated based on 
it’s own local neighborhood.
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PixelRNN/PixelCNN

• Explicitly calculates likelihood
• Can help in understanding model performance

• Relatively Slow
• Makes fairly believable images
• Area of extensive inquiry - PixelCNN+; PixelCNN++, 

PixelCNN 2.0, and many more.
• Concept of ‘Attention’
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http://cs231n.stanford.edu/reports/2016/pdfs/211_Report.pdf
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Variational Autoencoders (VAE)
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Variational Autoencoders (VAE)
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X zEncoder
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Variational Autoencoders (VAE)
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X zEncoder

Encoder can be:
A Linear Model
A Neural Network
a CNN 
..or nearly anything else. 

Historically, it started as a linear model.
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Variational Autoencoders (VAE)
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X zEncoder XDecoder
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Variational Autoencoders (VAE)
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X zEncoder XDecoder Loss
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Variational Autoencoders (VAE)
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X zEncoder Classifier
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Variational Autoencoders (VAE)
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X zEncoder XDecoder
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Variational Autoencoders (VAE)

• We assume that all of our data is generated from some 
unknown (i.e., latent) z.  
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z XDecoder
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z XDecoder

For Z, we’re going to 
assume some prior 
(i.e., a gaussian) to 

sample from.

Because we’re assuming 
our data is generated 
from some underlying Z, 
we don’t actually know 
what this Decoder is.  
We’re assuming it exists, 
but need to solve for it.

Here, we’re going to 
sample from X | Z, 

generally represented by a 
neural network.

1

2

3



icss.wm.edu29

z XDecoder
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z XDecoder

Gaussian Prior
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z XDecoder

Gaussian Prior Decoder Neural Net
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z XDecoder

Gaussian Prior Decoder Neural Net

p(x|z) can’t be calculated for 
every possible Z!
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z XDecoder

Decoder Neural Net

Encoder Neural Net!
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Variational Autoencoders (VAE)
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https://www.compthree.com/blog/autoencoder/
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Generative Adversarial Networks

What if we decide not to try and explicitly solve for the probability 
densities, and instead just sample the space created by Z?

Solution: GANs, or 2-player games, where both players are 
neural networks.
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GAN

The Players:
Red Team: Generator Network
Tries to generate real-looking images.

Blue Team: Discriminator Network
Tries to distinguish between real and fake images.
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GAN

Intuition:
(A) Sample from random noise (i.e., gaussian).
(B) Learn a transformation (neural network) that modifies noise to 
our training data distribution.
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Z Generator 
Network
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Z Generator 
Network

Discriminator Network Is an image real or 
Fake?
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Z Generator 
Network

Discriminator Network Is an image real or 
Fake?

Loss
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Defining GAN Architecture

• Interlinking two neural networks is a very unstable proposition.
• Easy to end up generating a lot of noise from noise, without 

finding helpful solutions, if your discriminator or generator are 
poorly specified.

• Generator is going to be focused on upsampling from the 
noise (Z) - more on this next slide.

• Discriminator is going to be a traditional CNN.

40
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Generator Networks

41

A
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Generator Networks
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A
? ?
? ?
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Generator Networks
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Rules of Thumb

• Use batch normalization
• Fully connected layers can be troublesome in deeper 

architectures
• LeakyReLU is important in the discriminator; ReLU in the 

generator.

44 Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks
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Recap

• What is a Generative Network?
• PixelRNN / PixelCNN
• Variational AutoEncoders (VAE)
• Generative Adversarial Networks (GAN)
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