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Long short term memory network

LSTM Simple RNN
)
(f\ _ Z \ W (ht—l) h; = tanh (W (h;—tl))
0 o Lt
\g) tanh)

cc=f0Oc_1+10g
hy = o ® tanh(c;)

3 icss.wm.edu 2@



Classification Models
Input Output

Loss Function,
and eventually
Model Weights
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Classification Models
Output

Loss Function,
and eventually
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Generative Models
Output

Loss Function,
and eventually
Model Weights
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Generative Models

Given some input of images, generate an output of samples
drawn from the same distribution.

7 icss.wm.edu



icss.wm.edu E

[ : -
‘ r. . - .
i \!’Jll 4
£S5 4 a
g - « 158 —

-
’

v



%

icss.wm.edu 2@



“r .,
R
0
|
u
]




Types of Generative Models

NADE/MADE

PixelRNN

Variational Autoencoder
Boltzmann Machine
GAN

GSN
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Types of Generative Models

NADE/MADE
PixelRNN Explicit Density Estimation

Va riational AUtOenCOder Approximate Density Estimation

Boltzmann Machine
GAN Implicit Density Estimation
GSN
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PixelCNN (..and PixelRNN)

Fully Visible Belief Network
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PixelCNN (..and PixelRNN)

n

p(zmage) — Hp(xz‘xla “'7332'—1)
=1

Really complex distribution
(conditioned on every other pixel in
an image!)

14 icss.wm.edu 2@



PixelRNN plimage) = gp(wi\xl, s Tim1)

Starts by generating an image pixel g@
in the upper-left hand corner.

Every pixel is then fed in, in order,
following a RNN approach.

Goal is to model the probability
distribution of all pixels by fitting the
RNN.
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PixelRNN plimage) = gp(wi\xl, s Tim1)

Starts by generating an image pixel gg—gg
in the upper-left hand corner. |
Every pixel is then fed in, in order, gg

following a RNN approach.

Goal is to model the probability
distribution of all pixels by fitting the
RNN.
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PixelRNN

Starts by generating an image pixel %%%
in the upper-left hand corner. J
Every pixel is then fed in, in order, 23_%

following a RNN approach. 23

p(image) = Hp(xi‘xla ooy Ti—1)
i=1

Goal is to model the probability
distribution of all pixels by fitting the
RNN.
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ool CNN p(image) = gp(xi\m, oy Tim1)

Generates the probability g@ g@ 23 g@ g@
distribution based on filters.

Each pixel is generated based on 2@ g@ g@ 2@ g@
it's own local neighborhood. g@ g@ x
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PixelRNN/PixelCNN
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Explicitly calculates likelihood
Can help in understanding model performance

Relatively Slow

Makes fairly believable images
Area of extensive inquiry - Pixel CNN+; Pixel CNN++,
PixelCNN 2.0, and many more.

Concept of ‘Attention’  wuomes —

http://cs231n.stanford.edu/reports/2016/pdfs/211_Report.pdf
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Variational Autoencoders (VAE)

p(image) = / p(2)p(a|2)dz
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Variational Autoencoders (VAE)

p(image) = [ p(2)p(a|2)dz

21 icss.wm.edu 2@



Variational Autoencoders (VAE)

Encoder can be:

A Linear Model

A Neural Network

a CNN

..or nearly anything else.

Historically, it started as a linear model.

p(image) = ] p(2)p(a|2)dz

%
@\'-»?

22 icss.wm.edu E



Variational Autoencoders (VAE)
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Variational Autoencoders (VAE)
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Variational Autoencoders (VAE)

p(image) = [ p(2)p(a|2)dz
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Variational Autoencoders (VAE)
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Variational Autoencoders (VAE)

We assume that all of our data is generated from some
unknown (i.e., latent) z.

z Decoder X
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Here, we’re going to 3
sample from X | Z,
9 generally represented by a
neural network.

z Decoder X

2

For Z, we’re going to
assume some prior
(i.e., a gaussian) to

sample from.

1 Because we’re assuming
our data is generated
from some underlying Z,
we don’t actually know
what this Decoder is.
We’'re assuming it exists,
but need to solve for it.

&
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9 p(image) = / p(2)p(a|2)dz

Decoder X
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/ plimage) = [ p)plalz)ds

Decoder X /

Gaussian Prior

30 icss.wm.edu E



9 p(image) = / p(2)p(al2)

dz

Decoder X / \

Gaussian Prior Decoder Neural Net
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0 p(image) = [ p(2)p(x|z)dz

z Decoder X

Gaussian Prior Decoder Neural Net

p(x|z) can’t be calculated for
every possible Z!

&
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9 p(image) = / p(2)p(a|2)dz

Decoder X

Decoder Neural Net

Encoder Neural Net!
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Varlatlonal Autoencoders (VAE)
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https:// .compthree.com/blog/autoencoder/
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Generative Adversarial Networks

What if we decide not to try and explicitly solve for the probability
densities, and instead just sample the space created by Z7?

Solution: GANSs, or 2-player games, where both players are
neural networks.
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GAN

The Players:

Red Team: Generator Network
Tries to generate real-looking images.

Blue Team: Discriminator Network
Tries to distinguish between real and fake images.
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GAN

Intuition:

(A) Sample from random noise (i.e., gaussian).

(B) Learn a transformation (neural network) that modifies noise to
our training data distribution.

R Generator
Network

i
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Is an image real or
Fake?

Y

Discriminator Network

Generator
Network
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Is an image real or
Fake?

Discriminator Network >

Loss

Generator
Network
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Defining GAN Architecture

Interlinking two neural networks is a very unstable proposition.
Easy to end up generating a lot of noise from noise, without
finding helpful solutions, if your discriminator or generator are
poorly specified.

Generator is going to be focused on upsampling from the
noise (£) - more on this next slide.

Discriminator is going to be a traditional CNN.
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Generator Networks

1
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Generator Networks
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Generator Networks
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Rules of Thumb

Use batch normalization
Fully connected layers can be troublesome in deeper

architectures
LeakyRelLU is important in the discriminator; ReLU in the

generator.

4 4 Unsupervised Representation Learning with Deep "
Convolutional Generative Adversarial Networks ICSS.whm.e d u
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Recap

What is a Generative Network?
PixelRNN / PixelCNN

Variational AutoEncoders (VAE)
Generative Adversarial Networks (GAN)
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