DATA 442:
Neural Networks &
Deep Learning

Dan RU nf()la — danr@wm.edu
Icss.wm.edu/datad442/

Input Network

Data Layers Output /\
v

Input Network 1

Data Layers Oz] t RN N y
v

Input Network

Data Layers Dot

w, hi—1,xt) = hy

2 .
https://www.youtube.com/watch?v=_7SVJGTjUMI icss.wm.edu E

Long short term memory network

LSTM Simple RNN
)
(f\ _ Z \ W (ht—l) h; = tanh (W (h;—tl))
0 o Lt
\g) tanh)

cc=f0Oc_1+10g
hy = o ® tanh(c;)

3 icss.wm.edu 2@

Classification Models
Input Output

Loss Function,
and eventually
Model Weights

\ X, E
- N - 17
N <1

: = :P-: & }“"i 3i =
‘ Jl ~“ =

Train),

4 icss.wm.edu 2@

Classification Models
Output

Loss Function,
and eventually

~ &V 4 | i
el Model Weights

c

Test “Cat’

5 icss.wm.edu 2@

Generative Models
Output

Loss Function,
and eventually
Model Weights

icss.wm.edu E

Generative Models

Given some input of images, generate an output of samples
drawn from the same distribution.

7 icss.wm.edu

icss.wm.edu E

[: -
‘ r. . - .
i \!’Jll 4
£S5 4 a
g - « 158 —

-
’

v

%

icss.wm.edu 2@

“r .,
R
0
|
u
]

Types of Generative Models

NADE/MADE

PixelRNN

Variational Autoencoder
Boltzmann Machine
GAN

GSN

: icss.wm.edu E@

Types of Generative Models

NADE/MADE
PixelRNN Explicit Density Estimation

Va riational AUtOenCOder Approximate Density Estimation

Boltzmann Machine
GAN Implicit Density Estimation
GSN

b icss.wm.edu E

PixelCNN (..and PixelRNN)

Fully Visible Belief Network

n

p(zmage) — Hp(xz|x17 ARy xi—l)

1=1

13 icss.wm.edu E@

PixelCNN (..and PixelRNN)

n

p(zmage) — Hp(xz‘xla “'7332'—1)
=1

Really complex distribution
(conditioned on every other pixel in
an image!)

14 icss.wm.edu 2@

PixelRNN plimage) = gp(wi\xl, s Tim1)

Starts by generating an image pixel g@
in the upper-left hand corner.

Every pixel is then fed in, in order,
following a RNN approach.

Goal is to model the probability
distribution of all pixels by fitting the
RNN.

15 icss.wm.edu 2@

PixelRNN plimage) = gp(wi\xl, s Tim1)

Starts by generating an image pixel gg—gg
in the upper-left hand corner. |
Every pixel is then fed in, in order, gg

following a RNN approach.

Goal is to model the probability
distribution of all pixels by fitting the
RNN.

16 icss.wm.edu 2@

PixelRNN

Starts by generating an image pixel %%%
in the upper-left hand corner. J
Every pixel is then fed in, in order, 23_%

following a RNN approach. 23

p(image) = Hp(xi‘xla ooy Ti—1)
i=1

Goal is to model the probability
distribution of all pixels by fitting the
RNN.

17 icss.wm.edu 2@

ool CNN p(image) = gp(xi\m, oy Tim1)

Generates the probability g@ g@ 23 g@ g@
distribution based on filters.

Each pixel is generated based on 2@ g@ g@ 2@ g@
it's own local neighborhood. g@ g@ x

18 icss.wm.edu 2@

PixelRNN/PixelCNN

15

=]

30

0 5 10 15 20 5 X

Explicitly calculates likelihood
Can help in understanding model performance

Relatively Slow

Makes fairly believable images
Area of extensive inquiry - Pixel CNN+; Pixel CNN++,
PixelCNN 2.0, and many more.

Concept of ‘Attention’ wuomes —

http://cs231n.stanford.edu/reports/2016/pdfs/211_Report.pdf

19 icss.wm.edu 2@

Variational Autoencoders (VAE)

p(image) = / p(2)p(a|2)dz

20 icss.wm.edu 2@

Variational Autoencoders (VAE)

p(image) = [p(2)p(a|2)dz

21 icss.wm.edu 2@

Variational Autoencoders (VAE)

Encoder can be:

A Linear Model

A Neural Network

a CNN

..or nearly anything else.

Historically, it started as a linear model.

p(image) =] p(2)p(a|2)dz

%
@\'-»?

22 icss.wm.edu E

Variational Autoencoders (VAE)

23 icss.wm.edu 2@

Variational Autoencoders (VAE)

24 icss.wm.edu 2@

Variational Autoencoders (VAE)

p(image) = [p(2)p(a|2)dz

25 icss.wm.edu 2@

Variational Autoencoders (VAE)

26 icss.wm.edu 2@

Variational Autoencoders (VAE)

We assume that all of our data is generated from some
unknown (i.e., latent) z.

z Decoder X

27 icss.wm.edu 2@

Here, we’re going to 3
sample from X | Z,
9 generally represented by a
neural network.

z Decoder X

2

For Z, we’re going to
assume some prior
(i.e., a gaussian) to

sample from.

1 Because we’re assuming
our data is generated
from some underlying Z,
we don’t actually know
what this Decoder is.
We’'re assuming it exists,
but need to solve for it.

&

28 icss.wm.edu EE

9 p(image) = / p(2)p(a|2)dz

Decoder X

29 icss.wm.edu E

/ plimage) = [p)plalz)ds

Decoder X /

Gaussian Prior

30 icss.wm.edu E

9 p(image) = / p(2)p(al2)

dz

Decoder X / \

Gaussian Prior Decoder Neural Net

31 icss.wm.edu E

0 p(image) = [p(2)p(x|z)dz

z Decoder X

Gaussian Prior Decoder Neural Net

p(x|z) can’t be calculated for
every possible Z!

&

32 icss.wm.edu

9 p(image) = / p(2)p(a|2)dz

Decoder X

Decoder Neural Net

Encoder Neural Net!

33 icss.wm.edu 2@

Varlatlonal Autoencoders (VAE)

ﬂﬂﬂﬂ 15

ﬂ
£y 9 '
33 '9 '9*’ &k
YRk Vb bR

&

https:// .compthree.com/blog/autoencoder/
34 icss.wm.edu EE

Generative Adversarial Networks

What if we decide not to try and explicitly solve for the probability
densities, and instead just sample the space created by Z7?

Solution: GANSs, or 2-player games, where both players are
neural networks.

35 icss.wm.edu E

GAN

The Players:

Red Team: Generator Network
Tries to generate real-looking images.

Blue Team: Discriminator Network
Tries to distinguish between real and fake images.

36 icss.wm.edu 2@

GAN

Intuition:

(A) Sample from random noise (i.e., gaussian).

(B) Learn a transformation (neural network) that modifies noise to
our training data distribution.

R Generator
Network

i

37 icss.wm.edu E

Is an image real or
Fake?

Y

Discriminator Network

Generator
Network

38 icss.wm.edu

Is an image real or
Fake?

Discriminator Network >

Loss

Generator
Network

39 icss.wm.edu

Defining GAN Architecture

Interlinking two neural networks is a very unstable proposition.
Easy to end up generating a lot of noise from noise, without
finding helpful solutions, if your discriminator or generator are
poorly specified.

Generator is going to be focused on upsampling from the
noise (£) - more on this next slide.

Discriminator is going to be a traditional CNN.

40 icss.wm.edu E

Generator Networks

1
3

=N

41 icss.wm.edu E

Generator Networks

? 17
? 17

A

42 icss.wm.edu E

Generator Networks

21114
1114

1
\

\

43 icss.wm.edu E

Rules of Thumb

Use batch normalization
Fully connected layers can be troublesome in deeper

architectures
LeakyRelLU is important in the discriminator; ReLU in the

generator.

4 4 Unsupervised Representation Learning with Deep "
Convolutional Generative Adversarial Networks ICSS.whm.e d u

T - =
DD 6
S (8 =

9

.W.& .h ..4

»o
\

{@
icss.wm.edu E

45

Recap

What is a Generative Network?
PixelRNN / PixelCNN

Variational AutoEncoders (VAE)
Generative Adversarial Networks (GAN)

46 icss.wm.edu E@

