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What is a “Good” Learning rate?

Step Decay - Every k iterations, the learning rate 
is cut by half.

Exponential Decay:

Inverse Decay:
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BFGS - Broyden Fletcher Goldfarb Shanno algorithm.  
Approximates Hessian with low-rank updates.
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Frozen Weights Layers, Calculated 
from all of CIFAR

Reinitialized layer with an output 
shape equal to the number of 
classes you need (Parameters 
here = 200)

FLIPORIGINAL Contrast / Brightness Cropping
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CPU
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GPU
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Graphics Processing Unit
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Graphics Processing Unit
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Graphics Processing Unit
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CPU

GPU

Only a Few Cores 
(Counted in Hundreds, at most, and 
normally in ten or less).

Very fast clock speeds 
(4GHz +)

Uses Physical Memory 
located Elsewhere on 
Motherboard
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CPU

GPU

Only a Few Cores 
(Counted in Hundreds, at most, and 
normally in ten or less).

Very fast clock speeds 
(4GHz +)

Uses Physical Memory 
located Elsewhere on 
Motherboard

LOTS of cores
Thousands - i.e., a RTX 2080 TI has 
4,352 cores.

Slower clock speeds 
(1-2 GHz )

Physical memory is 
integrated with the card.
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4X5 Matrix

5x5 Matrix 4x5 Matrix
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4X5 Matrix

5x5 Matrix 4x5 Matrix

LOTS of cores
Thousands - i.e., a RTX 2080 TI has 
4,352 cores.

Slower clock speeds 
(1-2 GHz )

Physical memory is 
integrated with the card.
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Low-level GPU Programming
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Comparison: 
https://arxiv.org/vc/arxiv/papers/100
5/1005.2581v1.pdf
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Deep Learning Frameworks

Majors Players:
Torch / PyTorch (Facebook)
TensorFlow / Keras (Google)

Old / Less Used / Integrated / Non-English:
Caffe (UC Berkeley); Theano (U Montreal); Caffe 2 (Facebook); 
PaddlePaddle (Baidu); CNTK (MSFT); MXNET (Amazon, MIT, CMU)

18

https://www.paddlepaddle.org.cn/
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What do these things do?

• Simplify Building our 
Computational Graphs
• Including computing gradients 

(autoGrad!)
• Integrate with GPUs and other 

dedicated cards.

19
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What framework to use?

20

Torch / PyTorch 
(~) TorchHub

TensorFlow / Keras
(+) TensorHub 
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What framework to use?
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Torch / PyTorch 
(~) TorchHub
(+) Dynamic Graphs

TensorFlow / Keras
(+) TensorHub 
(~) Static Graphs
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What framework to use?
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Torch / PyTorch 
(~) TorchHub
(+) Dynamic Graphs
( - ) Expert Readable 

TensorFlow / Keras
(+) TensorHub 
(~) Static Graphs
(+) Human Readable (Keras!)
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What framework to use?
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Torch / PyTorch 
(~) TorchHub
(+) Dynamic Graphs
( - ) Expert Readable 
(~) Fast

TensorFlow / Keras
(+) TensorHub 
(~) Static Graphs
(+) Human Readable (Keras!)
(~) TF: Fast
( - ) Keras: Slower 
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Next Up: Model Architecture

• What layer(s) should I use for my 
problem?

• How should I design my convolutions?

• What have successful models done?
24
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AlexNet

25

● First CNN winner of the ImageNet annual competition 
(2012)!  Classification Error: 16.4%

● First integration of ReLU with CNN architecture in the 
competition

● Manually Adapted Learning Rate (1e-2, reduced when 
accuracy no longer improving)

● 7 CNN ensemble 8 Layers
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VGGNet

• 16/19 Layers

• All filters 3x3

• Generally similar to 
AlexNet (Pooling 
interspersed)

26
https://medium.com/deep-learning-g/cnn-architectures-vggnet-e09d7fe79c45
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Why is a filter of 3x3 + more depth > 
11x11 with less depth?
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Why is a filter of 3x3 + more depth > 
11x11 with less depth?
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Why is a filter of 3x3 + more depth > 
11x11 with less depth?
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GoogleNet (aka Inception v1)

Focused on Computational 
Efficiency; similar accuracy 
(better in some cases) to 
VGG.
5 million total parameters (vs 
>60 million for AlexNet; 138 
million for VGG16).

Inception Modules.

32
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GoogleNet/Inception v1
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Basic Goal: Build a very performant 
“micro network” (Inception Layer), 
and then build a giant stack of 
them.

All outputs are concatenated 
together, and passed into the next 
inception layer.
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Inception Module in GoogleNet 
Architecture
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Inception Module in GoogleNet 
Architecture

At the start of the network is a 
Stem, which contains a 
traditional set of Convolutional 
and Pooling layers.
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Inception Module in GoogleNet 
Architecture

At the start of the network is a 
Stem, which contains a 
traditional set of Convolutional 
and Pooling layers.

Final 
Classification 
Layer (FC -> 
Softmax)
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Inception Module in GoogleNet 
Architecture

At the start of the network is a 
Stem, which contains a 
traditional set of Convolutional 
and Pooling layers.

Final 
Classification 
Layer (FC -> 
Softmax)Classification 

Outputs which 
add gradient 
to earlier 
layers.
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The Elephant in the Room: ResNet (2015)

• Huge increase in accuracy (down to 3.57% error on ImageNet)

• Huge increase in depth - 152 layers!
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ResNet

39
https://wiki.math.uwaterloo.ca/statwiki/index.php?title=File:Residual-Block-vs-DNN.png
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• FC1000 is to translate the 
final convolutional layer out to 
the number of classes you’re 
targeting.
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Summary

• Broad overview of hardware (CPU vs. GPU)
• Discussion of current frameworks for deep learning, pros/cons
• Discussion of popular architectures for image recognition

• VGG
• ResNet
• GoogleNet / Inception
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