DATA 442: Neural Networks & Deep Learning

Dan Runfola – danr@wm.edu icss.wm.edu/data442/

What is a "Good" Learning rate?

Step Decay - Every *k* iterations, the learning rate is cut by half.

Exponential Decay:

$$\alpha_{i+1} = \alpha_i e^{-ki}$$

Inverse Decay:

$$\alpha_{i+1} = \alpha_i / (1 + ki)$$

BFGS - Broyden Fletcher Goldfarb Shanno algorithm. Approximates Hessian with low-rank updates.

icss.wm.edu

CPU

GPU

Graphics Processing Unit

Graphics Processing Unit

Graphics Processing Unit

RINDBOIL

Only a Few Cores (Counted in Hundreds, at most, and normally in ten or less).

Very fast clock speeds (4GHz +)

Uses Physical Memory located Elsewhere on Motherboard

CPU

Only a Few Cores

(Counted in Hundreds, at most, and normally in ten or less).

Very fast clock speeds (4GHz +)

Uses Physical Memory located Elsewhere on Motherboard

LOTS of cores Thousands - i.e., a RTX 2080 TI has 4,352 cores.

Slower clock speeds (1-2 GHz)

Physical memory is integrated with the card.

4x5 Matrix

Thousands - i.e., a RTX 2080 TI has 4,352 cores.

 \bigotimes

Slower clock speeds (1-2 GHz)

Physical memory is integrated with the card.

4x5 Matrix

Low-level GPU Programming

Comparison: https://arxiv.org/vc/arxiv/papers/100 5/1005.2581v1.pdf

https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/ss.wm.edu

Deep Learning Frameworks

Majors Players:

Torch / PyTorch (Facebook)

TensorFlow / Keras (Google)

Old / Less Used / Integrated / Non-English:

Caffe (UC Berkeley); Theano (U Montreal); Caffe 2 (Facebook); PaddlePaddle (Baidu); CNTK (MSFT); MXNET (Amazon, MIT, CMU)

https://www.paddlepaddle.org.cn/

What do these things do?

- Simplify Building our Computational Graphs
 - Including computing gradients (autoGrad!)
- Integrate with GPUs and other dedicated cards.

Torch / PyTorch (~) TorchHub TensorFlow / Keras (+) TensorHub

Torch / PyTorch (~) TorchHub (+) Dynamic Graphs TensorFlow / Keras (+) TensorHub (~) Static Graphs

Torch / PyTorch (~) TorchHub (+) Dynamic Graphs (-) Expert Readable TensorFlow / Keras (+) TensorHub (~) Static Graphs (+) Human Readable (Keras!)

Torch / PyTorch (~) TorchHub (+) Dynamic Graphs (-) Expert Readable (~) Fast TensorFlow / Keras (+) TensorHub (~) Static Graphs (+) Human Readable (Keras!) (~) TF: Fast (-) Keras: Slower

Next Up: Model Architecture

What layer(s) should I use for my problem?

How should I design my convolutions?

What have successful models done?

AlexNet

- First CNN winner of the ImageNet annual competition (2012)! Classification Error: 16.4%
- First integration of ReLU with CNN architecture in the competition
- <u>Manually Adapted</u> Learning Rate (1e-2, reduced when accuracy no longer improving)
- 7 CNN ensemble

VGGNet

- 16/19 Layers •
- All filters 3x3
- Generally similar to • AlexNet (Pooling interspersed)

28	36	

28	36	
20		

28	36	
20	35	

28	36	
20	35	

GoogleNet (aka Inception v1)

Focused on Computational Efficiency; similar accuracy (better in some cases) to VGG.

5 million total parameters (vs >60 million for AlexNet; 138 million for VGG16).

Inception Modules.

GoogleNet/Inception v1

Basic Goal: Build a very performant "micro network" (Inception Layer), and then build a giant stack of them.

All outputs are concatenated together, and passed into the next inception layer.

Inception Module in GoogleNet Architecture

Convolution Pooling Softmax Other

Inception Module in GoogleNet Architecture

At the start of the network is a Stem, which contains a traditional set of Convolutional and Pooling layers. Convolution Pooling Softmax Other

Inception Module in GoogleNet Architecture

At the start of the network is a Stem, which contains a traditional set of Convolutional and Pooling layers. Convolution Pooling Softmax Other

icss.wm.edu

At the start of the network is a Stem, which contains a traditional set of Convolutional and Pooling layers.

37

The Elephant in the Room: ResNet (2015)

- Huge increase in accuracy (down to 3.57% error on ImageNet)
- Huge increase in depth 152 layers!

ResNet

34-layer residual

 FC1000 is to translate the final convolutional layer out to the number of classes you're targeting.

Summary

- Broad overview of hardware (CPU vs. GPU)
- Discussion of current frameworks for deep learning, pros/cons
- Discussion of popular architectures for image recognition
 - VGG
 - ResNet
 - GoogleNet / Inception

