DATA 442:
Neural Networks &
Deep Learning

Dan RU nf()la — danr@wm.edu
Icss.wm.edu/datad442/

Preprocessing. Zero Centered Data
Weights Initialization: He
Activations: RelLU

. . lef affineBackward(dUpstream, cache):
ArChlteCture X, W, B = cache

Loss Function

Gradient

‘ N = X.shape[0]
D = np.prod(X.shape[1:])
xReshape = np.reshape(X, (N, D))

[[Q{ S dx = np.reshape(np.dot(dUpstream, W.T), X.shape)

dw = np.dot(xReshape.T, dUpstream)
db = np.dot(dUpstream.T, np.ones(N))

Preprocessing

return(dx, dw, db)

T

3072 x 1

Iz

SGD: Witeration-l—l — Witeration — OéAf (Witeration)

Local Minima Saddle Points
L ;
W1 W1

icss.wm.edu 2@

ADAM (Kingma and Ba)

Beta 1 - Similar to Friction in SGD + Momentum
Beta 2 - Similar to Decay Rate in RMSProp

Practical Tip: Beta1l = 0.9, beta2=0.99, LR = 1e-3 can provide a
strong starting condition for tests with Adam.

4 icss.wm.edu E

What is a “Good” Learning Rate?
Network Gradieryeéwt Optimization

200000 1 __ jterationLoss — correctlyClassifiedimagesPercent
ol

180000 - | | i
I~
160000 - I ' ke
a
i
2 140000 - ' 0 WINE ' 0225 8
3 E
= e
o L b
L S— | LA -0.200 &
o " e L] A
g : "' — S
100000 { '.. ” 0175 >
’ £
| s
80000 { || | -0.150 S

60000 0125

0 50 100 150 200 250

%

5 icss.wm.edu

What is a “Good” Learning rate?

Lea I’n | n g rate Ca n Ch a n g e ' Network Gradiew@\t Optimization

200000 -

- iterationLoss - correctlyClassifiedlmagesPercent

180000 - 0275

Can take the good

-0.250

properties of multiple g 140000
curves. For example, g “
100000 - —— L0175

starting with a high learning
rate, and then slowing it
down.

80000 -

correctlyClassifiedlmaagesPercent

60000 -

MWWN\ L 0.150
0,125

6 icss.wm.edu E

What is a “Good” Learning rate?

Network GradieMscent Optimization

200000 1 ___ iterationLoss - correctlyClassifiedlmagesPercent
180000 1 O2E5
5
160000 - , it i |
a
0
@ 140000 - ~ g -0.225 3
3 { E
= o
=)
2 120000 A l “ i 0200 &
[' | v
] . Il P
- l =]
100000 A \. -0.175 =
' ¢
80000 | L0.150 8
60000 - L0125

0 50 100 150 200 250

vy

7 icss.wm.edu

What is a “Good” Learning rate?

Step Decay - Eve ry k Network Gradiewt Optimization

. . . . 200000 1 iterationLoss - correctlyClassifiedlmagesPercent
iterations, the learning rate is
CUt by half 160000 - ‘0-25°§
wi
2 140000 ‘ . -0.225 §
S E
2 3
2 120000 - L 0.200 &
z . 4
100000 - L0175 2
o
80000 - -0.150 E
60000 - L0125
0 50 100 150 200 250

8 icss.wm.edu E

What is a “Good” Learning rate?

Step Decay - Every k I Network GradieWtOptimization
iterations, the learning rate is
CUt by half 160000 1 (4 i -0.250

- iterationLoss - correctlyClassifiedlmagesPercent

-0.275

Exponential Decay: yumsT g th f i
ks Elzoooo N I | . —
Oéz_|_1 — sze ¢ 100000 - f!,” i

80000 - ‘l -0.150

correctlyClassifiedlmaagesPercent

60000 - 0,125

0 50 100 150 200 250

9 icss.wm.edu E

What is a “Good” Learning rate?

Step Decay - Eve ry k Network Gradiew@\t Optimization

ite rationS, the Iearn i ng rate iS o - iterationLoss ~ correctlyClassifiedimagesPercent |-
CUt by half. 160000 A -0.250§
%
Exponential Decay: g e
o k?: E; 120000 A I -0.200 so_g
Oéz—l— 1 — az € 100000 - % -0.175%'
80000 - L 0150 ©

Inverse Decay: L | , | 1 e

i1 =— Oéf,,/(l + kl)

10 icss.wm.edu E

Why not just skip learning rates?

W1

1" icss.wm.edu 2@

Why not just skip learning rates?

W1

12 icss.wm.edu 2@

Why not just skip learning rates?

W1

13 icss.wm.edu 2@

Why not just skip learning rates?

Hessian Matrix: O(N*2)
Inversion of Hessian: O(N”3)

A small neural net has 100,0007? ;
parameters. So, around a petabyte of X
memory would be required to invert a
hessian matrix in a small case. This is
obviously not well suited to (most)

available computation!

Quasi-Newton Alternatives

BFGS - Broyden Fletcher Goldfarb
Shanno algorithm.

Approximates Hessian with low-rank
updates.

L-BFGS - Limited Memory BFGS.
Avoids storing the full Hessian during
approximation, but does poorly with
stochastic updates (i.e., if you are
batching it struggles).

w nw O

W1

Loss, Training Accuracy and Validation Accuracy

== | O0Ss == Training Accuracy Validation Accuracy

0.8

0.0

Iteration

%

16 icss.wm.edu

Loss, Training Accuracy and Validation Accuracy

== | O0Ss == Training Accuracy Validation Accuracy

0.8

0.0

Iteration

%

17 icss.wm.edu

Model Ensembles

input_2: InputLayer input_3: InputLayer input_4: InputLayer input_5: InputLayer

ResNet50_View_0: Functional ResNet50_View_I: Functional ResNet50_View_2: Functional ResNet50_View_3: Functional

global_average_pooling2d: GlobalAveragePooling2D global_average_pooling2d_1: GlobalAveragePooling2D global_average_pooling2d_2: GlobalAveragePooling2D global_average_pooling2d_3: GlobalAveragePooling2D

TRy \ /

dropout: Dropout dropout_1: Dropout dropout_2: Dropout dropout_3: Dropout

S

concatenate: Concatenate

dense: Dense

dropout_4: Dropout

dense_1l: Dense

dropout_5: Dropout

dense_2: Dense

18 icss.wm.edu

Repeat:

-> Forward Pass

-> Backward Pass

-> Update Weights with Gradient

Final weights after
all iterations
complete, or
convergence.

>

19 icss.wm.edu E

Repeat: = l

-> Forward Pass Dramatically
Increase Learning

-> Backward Pass Rate

-> Update Weights with Gradient A

Save weights after
convergence
(become ensemble
member).

&

20 icss.wm.edu EE

161 Cifar10 (L=100 k=24, B=300 epochs)

= Standard Ir scheduling
=~ (Cosine annealing with restart Ir 0.1

Snapshot et

«
@\
B 10
E!
® 10%
=
W (5T
Model , Model ; Model | Model | Model | Model
| I | | |
1 2 3 4 5 8
10+ 1 1 1 1 |
0 50 100 150 200 250 300
Epochs

Figure 2: Training loss of 100-layer DenseNet on CI-
FARI10 using standard leaming rate (blue) and M = 6
cosine annealing cycles (red). The intermediate mod-
els, denoted by the dotted lines, form an ensemble at

the end of training.
as Single Model ° - ®*Y Snapshot Ensemble
«+] Standard LR Schedule M 044 Cyclic LR Schedule :
Yy Y
#

Figure I: Left: Illustration of SGD optimization with a typical learning rate schedule. The model converges
1o a minimum at the end of training. Right: Illustration of Snapshot Ensembling. The model undergoes several
learning rate annealing cycles, converging to and escaping from multiple local minima. We take a snapshot at
each minimum for test-time ensembling.

21 https://arxiv.org/pdf/1704.00109.pdf icss wm.e d u

NZN Loss;(f (2, W), y;) +

A

~
Data Loss

K
_ Z ng
k=1

A

R(W)

/

Regularization Loss

Loss, Training Accuracy and Validation Accuracy
== |Loss == Training Accuracy Validation Accuracy

0.8

0.6

0.4

" \k
0.0
2 4 6
Iteration

a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

https://www.jmlr.org/papers/volumel5/srivastavald4a/srivastavalda.pdf

23 icss.wm.edu

Tomorrow: Candy Cane

Today: Toddler

icss.wm.edu E

24

a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

https://www.jmlr.org/papers/volumel5/srivastavald4a/srivastavalda.pdf

25 icss.wm.edu

DropConnect

Regularization of Neural Networks using DropConnect

Outputs | Previous layer mask
ridx 1) uldx1l) EIIEE T EmE
X - Input
Predictions x
olkx 1) Features M
- vinx 1) =
- - g
r —
2
DropConnect 3
weights .
r 3 0
W(dxn) . Z
Softmax || Activation Feature E
layer function Jextractor =
- s(rW) alu) gl W) o
-
)) b) DropConnect ¢) Effective Dropout
a) Model Layout mask M mask M’

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input r, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W. The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax laver s. For comparison, (c¢)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).

26 http://proceedings.mlr.press/v28/wanl3.pdf .
icss.wm.edu

27

Data Augmentation

Input Images
and Classes

>

Class Name:
Stopsign

Y

Loss Function

7

Model (CNN)

icss.wm.edu

&

Data Augmentation

Input Images
and Classes

28

>

Class Name:

Stopsign

Y

Loss Function

Transform

7

Model (CNN)

&

icss.wm.edu

Data Augmentation

ORIGINAL FLIP

29 icss.wm.edu E

Data Augmentation

ORIGINAL FLIP Contrast / Brightness Cropping

30 icss.wm.edu

31

Transfer Learning

CNN Architecture

Train on Large
Dataset (i.e.,
ImageNet)

Fine tune based on
small Dataset (i.e.,
CIFAR10).

icss.wm.edu

&

amave o4 EHEEDT - EIEEEE~
automobile EHEEH‘
o Sl WS S

Transfer Learning - -ea-!=5_=

o [BIEa\E
frog ...--.‘...
horse .mﬂ.nmﬂ
o e Sl EEE e
ook o T e 2 O (D S R

=

S
/10

PWBhWahWW

Preprocessing

100
1000

10000

3072 x 1

&

32 icss.wm.edu

Transfer Learning

33 icss.wm.edu X

airplane

automobile EH..H.H.E‘
e S B WERS ¥ B

Transfer Learning - EEsEeEEE-P

o ESHeBPIK R
roo [I I R I O O R R B
norse S) [R S T
S A T P P

truck

\
Ws s
/

% T =S A

Preprocessing

3072 x 1 \ J
Reinitialized layer with an output V)
Y shape equal to the number of e
_ classes you need (Parameters =
Frozen Weights Layers, Calculated here = 200) = -

from all of CIFAR

34 icss.wm.edu @

Practical Pointers

1) If you have less than 1 million(!) images - consider using a
large dataset of similar data to train your network on.

2) Apply a transfer learning approach on your own dataset.

Note that most major packages - i.e., Keras, PyTorch - provide
easy mechanisms to load pre-trained weights in for a wide range

of architectures.

35 icss.wm.edu E

Summary

Strategies for setting or varying a learning rate
Newtonian Steps (no learning rate) vs. Linear Approximations
Strategies for reducing the difference between training

accuracy and testing accuracy

Model Ensembles
Regularization
Dropout

Data Augmentation

Transfer Learning

36 icss.wm.edu E

