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Neural Networks & 
Deep Learning
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Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU
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SGD:

Local Minima
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ADAM (Kingma and Ba)

Beta 1 - Similar to Friction in SGD + Momentum
Beta 2 -  Similar to Decay Rate in RMSProp
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Practical Tip: Beta1 = 0.9, beta2=0.99, LR = 1e-3 can provide a 
strong starting condition for tests with Adam.
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What is a “Good” Learning Rate?
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What is a “Good” Learning rate?

• Learning rate can change!

• Can take the good 
properties of multiple 
curves.  For example, 
starting with a high learning 
rate, and then slowing it 
down.
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What is a “Good” Learning rate?
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What is a “Good” Learning rate?

Step Decay - Every k 
iterations, the learning rate is 
cut by half.
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What is a “Good” Learning rate?

Step Decay - Every k 
iterations, the learning rate is 
cut by half.
Exponential Decay:
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What is a “Good” Learning rate?

Step Decay - Every k 
iterations, the learning rate is 
cut by half.
Exponential Decay:

Inverse Decay:
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Why not just skip learning rates?
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Why not just skip learning rates?
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Hessian Matrix: O(N^2)
Inversion of Hessian: O(N^3)

A small neural net has 100,000? 
parameters.  So, around a petabyte of 
memory would be required to invert a 
hessian matrix in a small case.  This is 
obviously not well suited to (most) 
available computation!
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Quasi-Newton Alternatives

15

L
o
s
s

W1

BFGS - Broyden Fletcher Goldfarb 
Shanno algorithm.  
Approximates Hessian with low-rank 
updates.

L-BFGS - Limited Memory BFGS.
Avoids storing the full Hessian during 
approximation, but does poorly with 
stochastic updates (i.e., if you are 
batching it struggles).



icss.wm.edu16



icss.wm.edu17



icss.wm.edu

Model Ensembles
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Repeat:
-> Forward Pass
-> Backward Pass
-> Update Weights with Gradient

Final weights after 
all iterations 
complete, or 
convergence.
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Repeat:
-> Forward Pass
-> Backward Pass
-> Update Weights with Gradient

Save weights after 
convergence 
(become ensemble 
member).

Dramatically 
Increase Learning 
Rate
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Snapshot 
Ensemble
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Data Loss Regularization Loss
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Dropout 

23 https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Today: Toddler Tomorrow: Candy Cane
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Dropout 

25 https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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DropConnect

26 http://proceedings.mlr.press/v28/wan13.pdf
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Data Augmentation
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Input Images 
and Classes

Class Name: 
Stopsign

Model (CNN)

Loss Function
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Data Augmentation
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Input Images 
and Classes

Class Name: 
Stopsign

Model (CNN)

Loss Function
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Data Augmentation
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FLIPORIGINAL
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Data Augmentation
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FLIPORIGINAL Contrast / Brightness Cropping
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Transfer Learning
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CNN Architecture
Train on Large 
Dataset (i.e., 
ImageNet)

Fine tune based on 
small Dataset (i.e., 
CIFAR10).
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Transfer Learning
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Transfer Learning
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Transfer Learning
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Frozen Weights Layers, Calculated 
from all of CIFAR

Reinitialized layer with an output 
shape equal to the number of 
classes you need (Parameters 
here = 200)
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Practical Pointers

1) If you have less than 1 million(!) images - consider using a 
large dataset of similar data to train your network on.
2) Apply a transfer learning approach on your own dataset.

Note that most major packages - i.e., Keras, PyTorch - provide 
easy mechanisms to load pre-trained weights in for a wide range 
of architectures.
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Summary
• Strategies for setting or varying a learning rate
• Newtonian Steps (no learning rate) vs. Linear Approximations
• Strategies for reducing the difference between training 

accuracy and testing accuracy
• Model Ensembles
• Regularization
• Dropout
• Data Augmentation

• Transfer Learning
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