
DATA 442:
Neural Networks &
Deep Learning

Dan Runfola – danr@wm.edu

icss.wm.edu/data442/

icss.wm.edu

Network Architecture: Fundamentals

2

Pixel 1
Value

Weight for
Pixel 1

*

Pixel 2
Value

Weight for
Pixel 2

*

+ ReLu

Pixel 1
Value

Pixel 2
Value

icss.wm.edu

Network Architecture: Activation Function

3

Pixel 1
Value

Pixel 2
Value

icss.wm.edu4

Network Architecture: Data Preprocessing

icss.wm.edu

Xavier Initialization

Original:
W = np.random.randn(3072, 10) * .0001
Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)
He:
W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)

5

icss.wm.edu

Another Strategy: Batch Normalization

6

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Full Matrix
of Image
Full Matrix
of Image 32 x 32 x 3

Tensor

Pixel 1
Value

Pixel 2
Value

Pixel 1
Value

Pixel 2
Value

Batch
Normalization

icss.wm.edu7

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

icss.wm.edu8

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu9

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu10

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu11

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu12

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu13

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

icss.wm.edu14

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

Loss Function

Gradient

icss.wm.edu15

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

Loss Function

G
ra

di
en

t

icss.wm.edu16

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

Loss Function

G
ra

di
en

t

icss.wm.edu17

P

3072 x 1

h

50

s

10

Architecture:

Preprocessing: Zero Centered Data
Weights Initialization: He
Activations: ReLU

P
re

pr
oc

es
si

ng

Loss Function

G
ra

di
en

t

icss.wm.edu

Practical Considerations for your Nets

18

icss.wm.edu

Network Architecture & Learning

19

P

3072 x 1

h

50

s

10

P
re

pr
oc

es
si

ng

Loss Function

Gradient

icss.wm.edu

Make sure your Weights Matrix isn’t 0s

One of the most common
problems you’ll run into is
that your gradients are all
0 - i.e., no changes are
being made. Print your
matrix to check this; this
can be because you’ve
saturated, or a poor
weights initialization
scheme, or just a bug in
your code.

20

icss.wm.edu

Double Check your Loss Function

Another common issue is
a miscalculated loss
function - i.e., you coded
it wrong, or the loss
function you chose isn’t
appropriate for your
distribution of data /
outcome goals. Always
print it to confirm the
value makes sense!

21

Trade Note: It is helpful to disable any regularization while doing this
debugging.

icss.wm.edu

Double Check your Loss Function

You can also solve for the
expected values to make
sure you’re getting the
magnitude right.

22

icss.wm.edu

Debugging Regularization

23

icss.wm.edu

Creating a Dev Dataset

Always, always, always do this before any real runs.

24

icss.wm.edu

Everything is working! Now what?

Learning Rate =
.00001

25

icss.wm.edu

Programmatically Searching for LR
You can easily write a loop
that automatically tests
different learning rates - i.e.,
starting with .0001 and
searching all values from
.0001 to .01. Use a small
number of epochs for this
test. Iterate over smaller
regions to find optimal
cases.

26

icss.wm.edu

What is a “Good” Learning Rate?

27

icss.wm.edu

What is a “Good” Learning Rate?

28

icss.wm.edu

What is a “Good” Learning Rate?

29

icss.wm.edu

More effective programmatic searches

30
https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b?gi=e49a04a83798

icss.wm.edu

More Advanced Optimization

31
http://hduongtrong.github.io/2015/1
1/23/coordinate-descent/

https://ozzieliu.com/2016/02/09/gra
dient-descent-tutorial/

icss.wm.edu32

L = 10

L = 5L = 1

W1

W2

icss.wm.edu33

L = 10

L = 5L = 1

W1

W2

icss.wm.edu34

L = 10

L = 5L = 1

W1

W2

icss.wm.edu35

L = 10

L = 5L = 1

W1

W2

icss.wm.edu

Local Minima

36

Loss

W1

icss.wm.edu

Saddle Point

37

Loss

W1

icss.wm.edu38

SGD:

icss.wm.edu39

SGD:

SGD +
Momentum:

icss.wm.edu40

SGD +
Momentum:

Local Minima

L
o
s
s

W1

L
o
s
s

W1

Saddle Points

Poor Conditioning

icss.wm.edu

AdaGrad (Duchi et al.)

41

SGD:

AdaGrad:

icss.wm.edu

RMSProp (Tieleman and Hinton)

42

AdaGrad:

RMSProp:

icss.wm.edu

ADAM (Kingma and Ba)

Beta 1 - Similar to Friction in SGD + Momentum
Beta 2 - Similar to Decay Rate in RMSProp

43

Practical Tip: Beta1 = 0.9, beta2=0.99, LR = 1e-3 can provide a
strong starting condition for tests with Adam.

icss.wm.edu

Summary

• Implementing Networks
• Practical Considerations for Network Fitting

• Debugging Issues
• Development Datasets & Loss = 0
• Learning Rate
• Grid vs. Randomized Searches for Hyperparameters

• Optimization Algorithms
• Limitations of SGD
• SGD + Momentum
• AdaGrad
• RMSProp
• ADAM

44

