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Network Architecture: Fundamentals

2

Pixel 1 
Value

Weight for 
Pixel 1

*

Pixel 2 
Value

Weight for 
Pixel 2

*

+ ReLu

Pixel 1 
Value

Pixel 2 
Value



icss.wm.edu

Network Architecture: Activation Function
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Network Architecture: Data Preprocessing
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Xavier Initialization

Original: 
W = np.random.randn(3072, 10) * .0001
Xavier:
W = np.random.randn(3072, 10) / np.sqrt(3072)
He:
W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)
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Another Strategy: Batch Normalization
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Practical Considerations for your Nets
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Network Architecture & Learning
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Make sure your Weights Matrix isn’t 0s

One of the most common 
problems you’ll run into is 
that your gradients are all 
0 - i.e., no changes are 
being made.  Print your 
matrix to check this; this 
can be because you’ve 
saturated, or a poor 
weights initialization 
scheme, or just a bug in 
your code.
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Double Check your Loss Function

Another common issue is 
a miscalculated loss 
function - i.e., you coded 
it wrong, or the loss 
function you chose isn’t 
appropriate for your 
distribution of data / 
outcome goals.  Always 
print it to confirm the 
value makes sense!
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Trade Note: It is helpful to disable any regularization while doing this 
debugging.
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Double Check your Loss Function

You can also solve for the 
expected values to make 
sure you’re getting the 
magnitude right.
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Debugging Regularization
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Creating a Dev Dataset

Always, always, always do this before any real runs.
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Everything is working! Now what?

Learning Rate =
.00001
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Programmatically Searching for LR
You can easily write a loop 
that automatically tests 
different learning rates - i.e., 
starting with .0001 and 
searching all values from 
.0001 to .01. Use a small 
number of epochs for this 
test.  Iterate over smaller 
regions to find optimal 
cases.
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What is a “Good” Learning Rate?
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More effective programmatic searches
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https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b?gi=e49a04a83798



icss.wm.edu

More Advanced Optimization
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http://hduongtrong.github.io/2015/1
1/23/coordinate-descent/

https://ozzieliu.com/2016/02/09/gra
dient-descent-tutorial/
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Local Minima
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Saddle Point
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SGD:
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SGD:

SGD + 
Momentum:
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SGD + 
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AdaGrad (Duchi et al.)
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SGD:

AdaGrad:
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RMSProp (Tieleman and Hinton)
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AdaGrad:

RMSProp:
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ADAM (Kingma and Ba)

Beta 1 - Similar to Friction in SGD + Momentum
Beta 2 -  Similar to Decay Rate in RMSProp
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Practical Tip: Beta1 = 0.9, beta2=0.99, LR = 1e-3 can provide a 
strong starting condition for tests with Adam.
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Summary

• Implementing Networks 
• Practical Considerations for Network Fitting

• Debugging Issues
• Development Datasets & Loss = 0
• Learning Rate
• Grid vs. Randomized Searches for Hyperparameters

• Optimization Algorithms
• Limitations of SGD
• SGD + Momentum
• AdaGrad
• RMSProp
• ADAM
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