DATA 442: Neural Networks & Deep Learning

Dan Runfola – danr@wm.edu icss.wm.edu/data442/

Network Architecture: Fundamentals

Network Architecture: Activation Function

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Network Architecture: Data Preprocessing

Xavier Initialization

Original:

W = np.random.randn(3072, 10) * .0001

Xavier:

W = np.random.randn(3072, 10) / np.sqrt(3072)

<u>He:</u>

W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)

Another Strategy: Batch Normalization

6

Architecture:

3072 x 1

Architecture:


```
#We are moving this into preprocessing, as once we get to
#convolutional nets, we won't want to do this anymore.
train = np.reshape(train, (train.shape[0], -1))
test = np.reshape(test, (test.shape[0], -1))
```

return(train, test)

Architecture:

Architecture:

Jef affineForward(X, W, B): #Total number of observations: N = X.shape[0] #Number of dimensions - in this example, 3072 (i.e., each observation has 3072 values) D = np.prod(X.shape[1:]) #Reshape our inputs to be (N,D), matching our expectation for the weights dot product. xReshape = np.reshape(X, (N, D)) #Calculate the dot product: out = np.dot(xReshape, W) + B #Save a cache for use later in the backprop: cache = (x, w, b) return(out, cache)

def reluForward(reluInput):
 out = np.maximum(reluInput, 0)
 cache = reluInput
 return(out, cache)

Architecture:

ief affineForward(X, W, B):
 #Total number of observations
 N = X.shape[0]

#Number of dimensions - in this example, 3072 (i.e., each observation has 3072 values
D = np.prod(X.shape[1:])

#Reshape our inputs to be (N,D), matching our expectation for the weights dot product. xReshape = np.reshape(X, (N, D))

#Calculate the dot product: out = np.dot(xReshape, W) + B

#Save a cache for use later in the backprop: cache = (x, w, b)

return(out, cache)

Architecture:

def svmLoss(y, estimatedScores, e): N = estimatedScores.shape[0]

correctClassScore = estimatedScores[np.arange(N), y]

margin = np.maximum(0, estimatedScores-correctClassScore[:,np.newaxis] + e)

#Set our correct cases to 0 as per the SVM Loss function: margin[np.arange(N), y] = 0

loss = np.sum(margin)

#Now we want to solve for our gradients. positiveCount = np.sum(margin>0, axis=1)

dx = np.zeros like(estimatedScores)

#Identify each case with a postiive value dx[margin > 0] = 1

dx[np.arange(N), y] -= positiveCount

dx /= N

return loss, dx

def reluBackward(upstreamGradient, cache): x = cache #Remember this gradient is just copying our incoming,

#Remember this gradient is just copying our incoming, #and then setting anything less than 0 to 0! dx = np.array(upstreamGradient, copy=True) dx[x <= 0] = 0</pre>

return(dx)

Practical Considerations for your Nets

Network Architecture & Learning

Make sure your Weights Matrix isn't 0s

One of the most common problems you'll run into is that your gradients are all 0 - i.e., no changes are being made. Print your matrix to check this; this can be because you've saturated, or a poor weights initialization scheme, or just a bug in your code.

fullPass = twoLayerNet(X = X_train[0:1], y = y_train[0:1], modelParameters = modelParametersInit)
print("Loss: " + str(fullPass[0]))
print("Gradient of W2 (example): \n" + str(fullPass[1]['W2']))

Gra	dient of	W2 (example):			
[[0.	0.	Θ.	0.	95.23316494
	0.	-95.23316494	Θ.	0.	0.]
[0.	0.	Θ.	0.	50.30978818
	0.	-50.30978818	Θ.	0.	0.]
[0.	0.	Θ.	0.	75.59835015
	0.	-75.59835015	0.	0.	0.]
[0.	0.	0.	0.	0.
	0.	0.	0.	0.	0. 1

Double Check your Loss Function

Another common issue is a miscalculated loss function - i.e., you coded it wrong, or the loss function you chose isn't appropriate for your distribution of data / outcome goals. Always print it to confirm the value makes sense!

fullPass = twoLayerNet(X = X_train[0:1], y = y_train[0:1], modelParameters = modelParametersInit)
print("Loss: " + str(fullPass[0]))
print("Gradient of W2 (example): \n" + str(fullPass[1]['W2']))

Los	s: 3224.3	327062904839				
Gra	dient of	W2 (example):				
]]	0.	0.	0.	0.	95.23316494	
	0.	-95.23316494	Θ.	0.	0.]	
[0.	Θ.	0.	0.	50.30978818	
	0.	-50.30978818	Θ.	0.	0.]	
[0.	Θ.	Θ.	0.	75.59835015	
	0.	-75.59835015	0.	0.	0.]	
[0.	Θ.	0.	0.	0.	
	0.	Θ.	0.	0.	0.]	

Trade Note: It is helpful to disable any regularization while doing this debugging.

Double Check your Loss Function

You can also solve for the expected values to make sure you're getting the magnitude right.

Debugging Regularization

Creating a Dev Dataset

Always, always, always do this before any real runs.

Everything is working! Now what?

Ave === Ite Ave while currentIteration < maxIterations

Learning Rate = .00001

randomSelection = np.random.randint(len(X_train), size=batchSize) xBatch = X_train[randomSelection,:] yBatch = y_train[randomSelection]						
<pre>terationModel = twoLayerNet(X = xBatch, y = yBatch, modelParameters = modelParameters) olotData['iterationLoss'].append(iterationModel[0]) olotData['correctlyClassifiedImagesPercent'].append(iterationModel[2])</pre>						
<pre>modelParameters['W1'] += -learningRate * iterationModel[1]['W1'] modelParameters['W2'] += -learningRate * iterationModel[1]['W2'] modelParameters['B1'] += -learningRate * iterationModel[1]['B1'] modelParameters['B2'] += -learningRate * iterationModel[1]['B2']</pre>						
currentIteration = currentIteration + 1						
<pre>print("Iteration: "+ str(currentIteration) + ": ") print("Average Weight 1: " + str(iterationModel[1]['W1'].mean())) print("Average Change in Weights Paramter 1" + str((-learningRate * iterationModel[1]['W1']).mean()) print("==============")</pre>						
<pre>#plotFit(plotData = plotData, title="Network Gradient Descent Optimization")</pre>						
ration: 1: rage Weight 1: 0.4004396529218216 rage Change in Weights Paramter 1-4.004396529218216e-06 ====================================						
ration: 2: rage Weight 1: 0.41018397177558424 rage Change in Weights Paramter 1-4.101839717755843e-06						
ration: 3: rage Weight 1: 0.11339039257647404 rage Change in Weights Paramter 1-1.1339039257647405e-06						

Programmatically Searching for LR

You can easily write a loop that automatically tests different learning rates - i.e., starting with .0001 and searching all values from .0001 to .01. Use a small number of epochs for this test. Iterate over smaller regions to find optimal cases.

br	lr in rates:
	<pre>m.compile(optimizer=SGD(learning_rate = lr),</pre>
	<pre>metrics=['categorical_accuracy'],</pre>
	loss='categorical_hinge')
	<pre>m.fit(x=X_train, y=y_train,</pre>
	batch_size=64,
	epochs=5,
	<pre>validation_data=(X_val,y_val),</pre>
	verbose = 0)
	iterationLoss = m.evaluate(x=X_test, y=y_test)
	<pre>print("LR: " + str(lr) + " Loss: " + str(iterationLoss[1]))</pre>

What is a "Good" Learning Rate?

icss.wm.edu

What is a "Good" Learning Rate?

icss.wm.edu

What is a "Good" Learning Rate?

More effective programmatic searches

More Advanced Optimization

https://ozzieliu.com/2016/02/09/gra dient-descent-tutorial/ icss.wm.edu

Loss

SGD: $W_{iteration+1} = W_{iteration} - \alpha \Delta f(W_{iteration})$

SGD:
$$W_{iteration+1} = W_{iteration} - \alpha \Delta f(W_{iteration})$$

SGD + V_{i+}

$$V_{i+1} = \rho V_i + \Delta f(W_i)$$
$$W_{i+1} = W_i - \alpha V_{t+1}$$

SGD + Momentum: $V_{i+1} = \rho V_i + \Delta f(W_i)$ $W_{i+1} = W_i - \alpha V_{t+1}$

Local Minima

W1

W1

AdaGrad (Duchi et al.)

SGD: $W_{iteration+1} = W_{iteration} - \alpha \Delta f(W_{iteration})$

AdaGrad:

$$W_{i+1} = W_i - \alpha \Delta / (\sqrt{\gamma} + .00000001)$$
$$\gamma = \sum_{i}^{N} \Delta^2$$

RMSProp (Tieleman and Hinton) AdaGrad:

$$\begin{split} W_{i+1} &= W_i - \alpha \Delta / (\sqrt{\gamma} + .00000001) \\ \gamma &= \sum_{i}^{N} \Delta^2 \\ \textbf{RMSProp:} \ \gamma &= \sum_{i}^{N} (\rho \Delta^2 + (1 - \rho) * \Delta^2)) \end{split}$$

ADAM (Kingma and Ba)

Beta 1 - Similar to Friction in SGD + Momentum

Beta 2 - Similar to Decay Rate in RMSProp

Practical Tip: Beta1 = 0.9, beta2=0.99, LR = 1e-3 can provide a strong starting condition for tests with Adam.

Summary

- Implementing Networks
- Practical Considerations for Network Fitting
 - Debugging Issues
 - Development Datasets & Loss = 0
 - Learning Rate
 - Grid vs. Randomized Searches for Hyperparameters
- Optimization Algorithms
 - Limitations of SGD
 - SGD + Momentum
 - AdaGrad
 - RMSProp
 - ADAM

